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1 Overview

The rating system I entered into the Deloitte/FIDE Chess Rating Challenge, the “Glicko-boost”
system, is a substantial extension of the Glicko system. The Glicko system (Glickman, 1999) is a
rating system I invented in the mid-1990s in which each player is characterized at any time by two
parameters: a rating, and a “ratings deviation” (RD). The RD, the main innovation of the Glicko
system, is a measure of the uncertainty in a player’s rating. The greater a player’s RD, the more
uncertainty exists about the player’s ability. The implication for rating updates is that players with
large RDs typically incur large rating changes, and opponents of players with large RDs tend not
to be impacted much by the game results against such players. The Glicko system has been in wide
use on various chess servers, online gaming systems, as well as for non-gaming applications.

The Glicko-boost system addresses several arguable weaknesses in the most commonly used form
of the Glicko system. The approach I constructed has the following features:

• The system allows for an advantage to white.

• If a player’s performance was exceptional in a given month, then the pre-month RD would
be increased (that is, “boosted”) to a higher value and the player would be re-rated. This
accounts for the possibility a player with a low RD but who is improving quickly over time may
be under-rated, and needs an extra increase to his/her rating. This concept is the foundation
of the so-called Glicko-2 system, but has been modified for a simple implementation in the
Glicko-boost system.

• The system updates players’ ratings once, and then updates the initial ratings a second time
using the opponents’ ratings and RDs from the first update. Thus, if a player’s opponent had
a strong performance during a given month relative to his/her rating, the player’s rating would
be updated relative to a higher opponent rating because of this 2-pass algorithm. Analogously,
if the player’s opponent had a weak performance, the player’s rating would be updated relative
to a lower opponent’s rating. In other words, a player’s rating change would be based on more
information about the opponents’ ability than simply the opponents’ pre-month ratings, as
with the Glicko system.

• Instead of the RD increasing over time by a constant amount, as in the Glicko system, the
magnitude of the increase can depend on the value of the RD itself, and also on the player’s
rating. This allows for a more flexible way in which rating uncertainty increases over time.
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In particular, because stronger players may (on average) have more stable strengths, the RD
increase for higher-rated players is, in general, slightly smaller than for lower-rated players.

An outline of the rating computation is as follows. The details of the computation are described
in Section 2. For the steps below, we assume that each player has a rating and an RD prior to
competing for a given month.

1. Perform Glicko updating (with a white advantage) for all players during the current month.

2. Perform Glicko updating (with a white advantage) again for each player using the pre-month
ratings and RDs, but use the opponents’ ratings and RDs from Step 1.

3. Based on the resulting ratings and RDs from Step 2, determine for each player whether the
total score exceeds the expected score by a “statistically significant” amount (as described in
Section 2.2). If so, then reset the player’s pre-month RD to a larger value specified in the
formulas; otherwise, make no changes to the RD.

4. Re-perform Step 1 of the algorithm (using the RDs determined from Step 3).

5. Re-perform Step 2 of the algorithm based on the results of Step 4. The resulting ratings and
RDs are the post-month parameter values based on the game outcomes.

6. Update the players’ RDs due to the passage of time by increasing the RD as a function of the
RD itself and the player’s post-month rating.

The sequence of six steps is applied as each month of game data is accumulated.

2 Details of the algorithm

The Glicko-boost system depends on three main component modules, which are discussed in this
section. A slight revision of the Glicko updating algorithm that addresses the advantage for white
is described in Section 2.1. The method to boost a player’s pre-month RD based on an exceptional
performance is presented in Section 2.2. Finally, the method for increasing players’ rating deviations
due to the passage of time is described in Section 2.3. In Section 2.4, the details of the entire rating
algorithm are described with reference to the three preceding component modules.

2.1 Glicko updating with a white advantage parameter

Assume that a player with rating r and rating deviation RD competes in J games in a partic-
ular month, with the opponents in each game having ratings r1, . . . , rJ and rating deviations
RD1, . . . ,RDJ . It is possible that the player has competed against the same opponent multiple
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times, in which case the value of rj and RDj is the same for those games. Also, let s1, . . . , sJ be
the scores (0, 0.5, 1) for these games. For j = 1, . . . , J , let

wj =

{
1 if the player had white in game j

−1 if the player had black in game j

Further, let η be the rating advantage for playing white (a system parameter that needs to be
estimated). Then to update the player’s rating and rating deviation to r′ and RD′, respectively,
based on the game outcomes, compute

RD′ =

√(
1

RD2 +
1

d2

)−1
r′ = r + (RD′)2q

J∑
j=1

g(RDj)(sj − E(η, wj, r, rj,RDj))

where

q =
ln 10

400
= 0.0057565

g(RDj) = 1/
√

1 + 3q2(RD2
j)/π

2

E(η, wj, r, rj,RDj) =
1

1 + 10−g(RDj)(r+wjη−rj)/400

d2 =

q2 J∑
j=1

(g(RDj))
2E(η, wj, r, rj,RDj)(1 − E(η, wj, r, rj,RDj))

−1 .
The only difference between these formulas and the original Glicko updating formulas is the re-
placement of the rating difference (r− rj) in the computation for the function E() with a term that
accounts for the advantage to white, (r + wjη − rj).

2.2 RD boost based on exceptional performances

The following computation results in the inflation of a player’s RD if the player’s performance in a
given month was exceptional relative to what was expected. Assuming the notation in Section 2.1,
let

Z =

∑J
j=1 g(RDj)(sj − E(η, wj, r, rj,RDj))√∑J

j=1 g(RDJ)2E(η, wj, r, rj,RDj)(1 − E(η, wj, r, rj,RDj))

which is a standardized measure (a so-called “z-score”) of the degree to which the player outper-
formed the expected score. The z-score is approximately normally distributed with mean 0 and
standard deviation 1. Based on this computation, RD′, the revised value of RD (the original
pre-month rating deviation), is computed as

RD′ =

{
RD if Z ≤ k

(1 + (Z − k)B1)RD +B2 if Z > k
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where the threshold value k was chosen to be 1.96, the value at which 2.5% of the time Z would
be larger just by chance. The system parameters B1 and B2 are constrained to be positive, and
are to be estimated as system parameters. Note that if B1 and B2 are estimated to be close to 0,
the value of RD changes by a negligible amount if a player’s performance is exceptional, and larger
values of these parameters results in larger boosts in RD.

2.3 RD increase over time

To account for the increased uncertainty in ability due to the passage of time, the original Glicko
system updates a player’s RD (after updating from game results that month) by the formula

RDnew =
√

RD2 + c2,

clipping the value at 350 if the above computation produced a larger value. The current system,
instead, uses

RDnew =
√

RD2 + exp(α0 + α1RD + α2RD(r/1000) + α3(r/1000) + α4(r/1000)2).

where r is the player’s current rating, and α0, α1, . . . , α4 are system parameters that are to be
estimated. Clipping of this rating deviation is relative to a system parameter (as described below)
that is estimated in the optimization process. The above formulation allows the increase in RD to
depend on the player’s rating and on the RD itself.

2.4 Algorithm implementation

Below are the steps of the Glicko-boost system in more complete detail. Assume at the start of
month t we have ratings ri and rating deviations RDi for a subset of players. For players without
a rating or RD, use values runr and RDunr, which are system values that are to be estimated. For
players with a FIDE rating but without an RD (which occurs in the contest at t = 1), use RD30 for
players that have competed in at least 30 FIDE games, and use RD29 for those having played 29
or fewer games. Again, these values, which have been constrained in the system by the following
inequality

RD30 ≤ RD29 ≤ RDunr,

are to be estimated through the optimization procedure. Once all players have actual or imputed
ratings and RDs, carry out the following steps. Assume players 1, 2, . . . , J are involved in competi-
tion during month t.

1. Letting r1, . . . , rJ be the ratings at the start of month t, and RD1, . . . ,RDJ be the RDs at
the start of month t, determine the updated ratings and RDs based on Glicko updating (see
Section 2.1). Denote these values r′1, . . . , r

′
J for the ratings, and RD′1, . . . ,RD′J for the RDs.
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2. For each player i, perform Glicko updating using the player’s pre-month t rating and RD (ri
and RDi), but using the opponents’ ratings and RDs resulting from Step 1 (that is, the r′j
and RD′j). Denote the resulting updates r∗1, . . . , r

∗
J and RD∗1, . . . ,RD∗J .

3. With ratings and RDs r∗1, . . . , r
∗
J and RD∗1, . . . ,RD∗J as the inputs, perform the RD boost

computation of Section 2.2 for each player to determine revised RDs. Denote the recomputed
rating deviations RD†1, . . . ,RD†J . If any of these values is larger than RDunr, set them to
RDunr.

4. Re-perform Glicko updating using ratings r1, . . . , rJ (pre-month ratings) and rating deviations
RD†1, . . . ,RD†J (RDs from Step 3). Denote the resulting updated ratings r+1 , . . . , r

+
J and rating

deviations RD+
1 , . . . ,RD+

J .

5. As in Step 2, re-perform Glicko updating for each player i using rating ri and rating devia-
tion RD†i , but using the r+j and RD+

j for the opponents’ ratings. Call the resulting ratings

rfin1 , . . . , rfinJ and rating deviations RDfin
1 , . . . ,RDfin

J , which are the final updated ratings due
to the game outcomes.

6. To update the RDs due to the passage of time between month t and month t+1, apply the RD
increase algorithm of Section 2.3 to all players (not just those who competed in month t). For
those who competed in month t, apply the RD increase formula using ratings rfin1 , . . . , rfinJ and
rating deviations RDfin

1 , . . . ,RDfin
J as the inputs. For those who did not compete in month

t, use the ratings and RDs from the start of month t as the inputs. This will result in a new
set of RDs for use at the start of the following month, which can be relabeled RD1, . . . ,RDJ .
If any of the computed RDs is larger than RDunr, then set these RDs to RDunr.

The ratings at the start of month t+ 1 are either rfin1 , . . . , rfinJ for the players who competed
in month t, or the ratings at the start of month t for those who did not compete.

3 Optimization

The Glicko-boost system described in Section 2.4 involves 12 system parameters that needed to
be estimated; a white advantage parameter (η), two RD boost parameters (B1 and B2), five RD
increase parameters (α0, . . . , α4), a default rating for unrated players (runr), and three default RD
parameters (RDunr, RD30, and RD29). The following briefly explains the optimization approach I
used to estimate the Glicko-boost system parameters.

3.1 Use of the primary, secondary and tertiary game data

All three supplied data sets were used for rating players as well as estimating all system parameters.
Rather than combining all three data sets into one large data set, the rating update and optimization
procedure recognized two features of the secondary and tertiary data sets to incorporate them
distinctly from the primary data set.
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• Color information was lacking for the secondary and tertiary data sets.

• The secondary and tertiary data sets were of possibly worse quality or lesser relevance to
making predictions to the test data than the primary data set.

The lack of color information in secondary and tertiary data sets was addressed in a straightfor-
ward manner. In the rating algorithm, when computing the E() function in the Glicko component
algorithm of the rating system, the color indicator variable wj was forced to be 0 for games in
the secondary and tertiary data sets. This ensured that the E() function always involved only
the difference in players’ ratings, r − rj, rather than an explicit white advantage in the form of
r + wjη − rj.

To address the lesser relevance of games in the non-primary data sets, the games within each data
set received weights depending on their data set membership. The games in the primary data set
received full weight (i.e., a weight of 1). Games in the secondary data set were weighted by a factor
Wt2 in the computations, and the games in the tertiary data set were weighted by a factor Wt3,
both being values that were to be estimated through the optimization procedure. More specifically,
the expression g(RDj) in the Glicko updating algorithm, which itself can be understood as a weight
for game j based on the opponent’s rating uncertainty, was replaced by (Wt2g(RDj)) whenever the
game came from the secondary data set, and by (Wt3g(RDj)) whenever the game came from the
tertiary data set. The values Wt2 and Wt3 were constrained to be between 0 and 1.

The incorporation of the secondary and tertiary data sets therefore added two more parameters
(Wt2 and Wt3) to estimate in the optimization process, though these parameters were only used to
help optimize the system parameters and were not of interest themselves as part of the Glicko-boost
system.

3.2 Optimization criterion and implementation

While several different optimization criteria were considered, the one used in the submitted entry
involved the following procedure.

1. For a set of selected system parameters and weight parameters, run the Glicko-boost rating
system (on all three data sets, appropriately weighted) for months 1 through 129. Obtain the
ratings and RDs for all players relevant for predicting games in month 130.

2. Only for the primary data set, compute the expected scores of the games (see below) in month
130. Retain all ratings, and inflate all the RDs by the RD inflation algorithm in Section 2.3 to
obtain the appropriate ratings and RDs for predictions of games in month 131 of the primary
data set, and then compute expected scores of games in month 131. Recursively, do the same
procedure to obtain expected scores for games in month 132 in the primary data set. Note that
the predictions for month 131 do not involve information on game outcomes from month 131,
and similarly predictions in month 132 do not use game outcome information from months
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System Optimum
Parameter Value Description

η 30.0 Advantage to white
B1 0.20139 RD boost multiplicative factor
B2 17.5 RD boost additive factor
α0 5.83733 RD increase: intercept
α1 –1.75374e-04 RD increase: RD factor
α2 –7.080124e-05 RD increase: RD× rating factor
α3 0.001733792 RD increase: rating factor
α4 0.00026706 RD increase: rating-squared factor

runr 1946.25 Default rating for unrated players
RDunr 250.0 Default RD for unrated players
RD30 250.0 RD for rated players with 30+ games
RD29 250.0 RD for rated players with fewer than 30 games

Wt2 1.0 Weight for secondary data set
Wt3 0.5005 Weight for tertiary data set

Table 1: Optimized system parameter values using the Nelder-Mead algorithm.

130 and 131. This sequence of computing expected scores mimicked the sequence necessary
in the test data set.

3. Identify the players (real and fictitious) involved in games in months 133 to 135 in the test
data set, and compute the binomial deviance criterion on the subset of games from months
130 to 132 restricted to this subset of players. This (averaged) binomial deviance was the
optimization criterion used for estimating the system and weighting parameters.

The expected score for a game between players i and j with ratings ri and rj and rating deviations
RDi and RDj was approximated by

Expected Score =
1

1 + 10
−g(
√

RD2

i+RD2

j )(ri+wijη−rj)/400
.

This approximation to the true expected score has been demonstrated to be reasonably accurate in
Monte Carlo simulations.

The optimization was carried out in R using the optim function, using the Nelder-Mead algorithm
to optimize over the system and weighting parameters. The Nelder-Mead algorithm is a reasonably
robust iterative procedure that does not require continuous second derivatives of the function being
optimized, as is the case with more conventional gradient-based methods. The core functions to
run the rating system for the 132 months of data on all three data sets were implemented in R,
as well as Fortran functions called from within R. The results of the optimization procedure are
summarized in Table 1.

Several aspects of the results are worthy of comment. The advantage to white is estimated to be
about 30 points, similar to that of the contest Glicko benchmark. The RD boost parameters of B1 =
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Player, Rating (RD) A B C D E F G H Total

Player A, 2300 (140) × W 0 B 0 W 0 B 1 W 1 B 0 2.0

Player B, 2295 (80) B 1 × W 1
2

W 1 B 1
2

W 1 B 1 5.0

Player C, 2280 (150) W 1 B 1
2

× B 1 B 1 W 1 W 1
2

5.0

Player D, 2265 (70) B 0 W 0 × W 0 B 1
2

W 0 B 0 0.5

Player E, 2260 (90) B 1 W 1
2

B 1 × W 1 B 1
2

W 0 4.0

Player F, 2255 (200) W 0 B 0 W 0 W 1
2

B 0 × B 0 0.5

Player G, 2250 (50) B 0 W 0 B 0 B 1 W 1
2

× W 0 1.5

Player H, 2075 (120) W 1 B 1
2

W 1 B 1 W 1 B 1 × 5.5

Table 2: Game results among eight fictitious players labeled A through H, followed by each player’s
rating and RD. Each entry in the table indicates the color and the game result against the player
in the corresponding column.

0.20139 and B2 = 17.5 indicated a moderate increase to players’ RDs who perform exceptionally
well in a month; for example, a player who performed 3 standard deviations better than expected
(based on the second iteration of Glicko updating) would experience a (1 + (3.0− 1.96)) = 1.21 or a
21% increase in RD (plus the additional B2 = 17.5) before updating the ratings again. The initial
rating for all unrated players was estimated at 1946 with a corresponding RD of 250. The initial
RD did not seem to depend on whether the player was unrated, or whether the player had a FIDE
rating. It is also of interest to note that the secondary data set was estimated to have full weight
and that the tertiary data set was estimated to have approximately half weight.

4 Example application

To illustrate the Glicko-boost rating system, we demonstrate its application on a fictitious tourna-
ment. Assume eight players (labeled A through H) compete in six games, three each as white and
as black. For this illustration, we assume that these are the only games each competitor plays in a
given month. The players’ initial ratings and RDs, and the game results, are displayed in Table 2.

The players are listed in rating order (as opposed to the order based on the final total). The example
was constructed to highlight the rating movement across the individual steps of the algorithm. The
first seven players have ratings within 50 points of each other, and the eighth player has a much
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Initial Step 1 Step 2 Reset Step 3 Final RD time increase
Player Rating (RD) Rating (RD) Rating (RD) RD Rating (RD) Rating (RD) Rating (RD)

A 2300 (140) 2209 (104.3) 2223 (103.3) 140 2210 (104.5) 2230 (103.4) 2230 (105.0)
B 2295 (80) 2344 (70.9) 2338 (71.0) 80 2344 (70.9) 2338 (71.0) 2338 (73.3)
C 2280 (150) 2386 (107.5) 2379 (107.0) 150 2387 (107.8) 2385 (107.2) 2385 (108.8)
D 2265 (70) 2205 (63.8) 2209 (63.6) 70 2205 (63.8) 2211 (63.7) 2211 (66.3)
E 2260 (90) 2287 (77.7) 2283 (77.4) 90 2288 (77.8) 2287 (77.5) 2287 (79.7)
F 2255 (200) 2051 (121.7) 2075 (120.1) 200 2053 (122.0) 2082 (120.7) 2082 (122.0)
G 2250 (50) 2232 (47.5) 2235 (47.4) 50 2232 (47.5) 2236 (47.5) 2236 (50.9)
H 2075 (120) 2280 (98.6) 2265 (97.0) 153.1 2353 (114.7) 2330 (112.2) 2330 (113.7)

Table 3: Step-by-step results of Glicko-boost applied to game results in Table 2.

lower rating. This last player, who performed extremely well relative to his rating, demonstrates the
effect of the RD boost portion of the algorithm. The remaining players highlight other aspects of
the rating system and algorithm, including the effect of different RDs on the pre-post tournament
rating changes, and the effect of the second pass of the re-rating (that is, Steps 2 and 4). The
RDs in the example are generally large, corresponding to players who most likely do not compete
frequently, so that rating changes would be expected to be sizable. The results of Glicko-boost,
displayed step-by-step, are shown in Table 3.

The column in Table 3 labeled “Step 1” shows the result of applying Glicko updating (with the
30-point white advantage). The larger rating changes tend to correspond, as expected, to players
with large RDs. Players A, D, and F have much poorer performances than their initial rating
would predict, so the Step 1 rating drops accordingly. Meanwhile players B, C and H have much
better performances than predicted, and therefore have large rating increases in Step 1. In the case
of player H, would had an extraordinary performance, the rating increase is over 200 points (the
magnitude partially explained by the large initial RD of 120).

In Step 2, the players’ initial ratings are updated relative to the opponents’ Step 1 ratings and RDs.
It is interesting to note how the results differ from the ratings derived from Step 1. In every case,
the rating changes from the initial ratings to Step 2 are less extreme than the change to Step 1.
This is because the Step 2 ratings factor in the opponents’ results. So, for example, while player
F’s rating dropped from 2255 to 2051 in Step 1 based on very poor results, the 2075 Step 2 rating
recognizes that his opponents may have been stronger than their initial ratings indicate.

The column labeled “RD Reset” is either the initial RD, or a boosted RD if the player’s performance
was exceptional. Only player H met the criterion to warrant a boost in RD, which increased his
initial RD from 120 to 153.1.

Steps 3 and 4 then reapply the computations of Steps 1 and 2 using the initial ratings and the reset
RDs (which are all the same as the initial RDs except for player H). The Step 4 ratings are labeled
in the table “Final Rating (RD).” It is worth pointing out that if none of the RDs increased through
the RD boost, then Steps 3 and 4 would be unnecessary to carry out and the results of Step 2 would
be the final ratings and RDs. The results of Steps 3 and 4 are very similar, as expected, as those in
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Steps 1 and 2, except that the greater initial uncertainty (larger RD) in player H’s strength changes
the computation slightly. The differences in ratings between Steps 1 and 3, and between Steps 2
and 4, are relatively small, except in the case of player H whose rating increased more dramatically
due to the RD boost.

The final column in Table 3 reports the ratings and RDs to use as the initial player information for
the following month. The column incorporates the RD increase due to the passage of time. As can
be seen, the increase in uncertainty over one month is fairly small, increasing the RDs typically by
2-3 points.

5 Comments

This description concludes with comments on the modularity of the the Glicko-boost system, and
some final thoughts.

5.1 Modularity of the Glicko-boost system

One of the appeals of the Glicko-boost system is its modularity. Several of the system’s components
were developed specifically to improve the predictability on the test set, though the increased
complexity was made at the sacrifice of simplicity. However, some of the system’s components can
be simplified or even eliminated altogether to create a more accessible algorithm. Below are some
ways in which the method could be simplified while still retaining the main overall features.

• Simplify the formula for RD increases over time. Based on the optimized values of α1 . . . , α4,

RD increases actually vary over a small range (the amount added to RD2 in the formula in
Section 2.3 tends to stay between 17.0 and 19.0) as a function of the current RD and rating.
For implementing a practical system, using the original Glicko addition of c2 per month would
probably be sufficient.

• Eliminate repeated Glicko computations in the system. The Glicko-boost system improved
predictability substantially by iterating the Glicko computations twice before the RD boost,
and twice after the RD boost. Simplified versions of the Glicko-boost system could involve
eliminating one iteration of either or both pairs of Glicko computations.

• Eliminate the RD boost formula. The RD boost formula is intended to detect players whose
improvement is quicker than the ordinary Glicko formulas can track. While the RD boost is
considered a fundamental feature of the described system, for a FIDE player population this
may not be essential (though this would depend on the extent of FIDE’s intended membership
expansion), in which case the RD boost formulas could be eliminated from the proposed
algorithm. Along with the RD boost elimination, the second pair of Glicko iterations could
be eliminated as well.
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It should be noted as well that the modularity of the system also allows for straightforward exten-
sions, and not just simplifications. For example, initial ratings and RDs for unrated players could
depend on other factors, such as age, or rating in a national federation converted appropriately to
the FIDE scale. Also, for increased accuracy, further iterations of the Glicko updating could be
considered.

5.2 Final thoughts

The formulation of the Glicko-boost system was the culmination of various attempts at constructing
a reasonably simple extension of the Glicko system. In fact, the Glicko-boost system with the
optimized parameters in Table 1 was not the system with the greatest predictability among the
entries I submitted. I chose the method described in this document because it had the greatest face
validity among the competitive entries I had developed. For example, one of the system components
I had experimented with was the initial RD being a function of the number of games previously
played and of the initial FIDE rating. I discovered that the optimal relationship involved RDs
increasing as a function of the player’s initial rating. This made little sense because higher-rated
players tend to be more stable than lower-rated players, and if implemented would be counter to
the system having face validity despite the system producing slightly better predictions. Similarly,
I had considered an RD boost formula that increased a player’s RD for exceptional performances,
but also for extremely poor performances. Again, while this resulted in slightly better predictions,
my sense was that politically it would be a mistake to accelerate the decline of a player’s rating, so
I removed this feature from the final system I entered into the contest.

Because the rating system was a complicated function of many system parameters that had inter-
dependencies, the optimization function was sensitive to starting values. The optimization criterion
function was likely multimodal, so that any application of the optimization routine could find a
local optimum depending on the starting value, but not necessarily a global optimum. The opti-
mized parameters in Table 1 came about by starting the optimization routine at values suggested
through other optimized systems I tried, and that had intuitive appeal. By using different starting
values, I noticed that parameters such as the relative weight of the tertiary data set varied between
0.3 and 0.6 without much affecting the optimization criterion. Furthermore, the initial RDs for
unrated and rated players also varied quite a bit from different starting values, and across different
rating systems, again without substantially affecting the optimum criterion values. Finally, differ-
ent choices of the criterion function did not end up playing a large role. I tried using binomial
predictive deviance criteria that were averaged over all games in the final two months of results,
as well as weighted binomial predictive deviance criteria that weighted the deviances according to
the frequency of games played by players in the training data, but again the optimal values did not
appear to be very sensitive to these changes.
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