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Abstract

Many late-onset diseases are caused by what appears to be a combination of a ge-
netic predisposition to disease and environmental factors. The use of existing cohort
studies provides an opportunity to infer genetic predisposition to disease on a represen-
tative sample of a study population, now that many such studies are gathering genetic
information on the participants. One feature to using existing cohorts is that subjects
may be censored due to death prior to genetic sampling, thereby adding a layer of
complexity to the analysis. We develop a statistical framework to infer parameters
of a latent variables model for disease onset. The latent variables model describes
the role of genetic and modifiable risk factors on the onset ages of multiple diseases,
and accounts for right-censoring of disease onset ages. The framework also allows for
missing genetic information by inferring a subject’s unknown genotype through appro-
priately incorporated covariate information. The model is applied to data gathered in
the Framingham Heart Study for measuring the effect of different Apo-E genotypes on
the occurrence of various cardiovascular disease events.

1 Introduction

Medical researchers are increasingly interested in the role of genetic factors in the manifesta-
tion of late-onset diseases. Late-onset diseases, such as Alzheimer disease and hypertension,
are triggered by what appears to be a combination of a genetic predisposition to disease and
environmental factors. Understanding the genetic and potentially modifiable environmen-
tal mechanisms has important implications for genetic and medical counseling, as well as
further research activities. Research in establishing genetic contributions to the occurrence

late-onset diseases has been on the rise. Among many such studies, recent ones that have



found a relationship between genetic factors and age of disease onset include Lautenschlager
et al. (1996), Claus et al. (1990), Payami et al. (1997), and Blacker et al. (1997). It is
now accepted that environmental factors are not the only determinants of disease onset; the

inheritance of deleterious genes, at least in part, is causally responsible.

Existing prospective cohort studies offer opportunities to make inferences about the role
of genetics in late-onset diseases. These studies allow for genetic information to be collected
on a sample that is chosen to be representative of an appropriate study population. In-
complete information is usually not as pervasive as in other designs, such as retrospective
family studies (see, for example, Thomson 1995, and references within). In these retrospec-
tive family studies, incident cases (called probands) of the disease are identified, and then
retrospective information about the proband and the proband’s family is collected. The
affected status of members of the proband’s family provide information on incidence and
age at disease onset. In cohort studies, in contrast, the ability to follow individuals for
long periods results in more incident cases and fewer censored cases. Furthermore, cohort
studies typically eliminate certain forms of selection bias, such as ascertainment bias, that
are present in retrospective family studies. The use of available databases often provides
extensive information on risk factors and disease events which results in decreased study
costs that allow for more informative data analyses. Statistical development of methods for
determining disease onset age in cohort studies includes Cupples et al. (1989) and Cupples
et al. (1991). Their work uses likelihood-based life table models to account for informative
censoring. More recently, Gauderman and Thomas (1994) examined the genetic effects in
proportional hazard models using Markov chain Monte Carlo posterior simulation. Iversen
et al. (2000) developed a framework to model the effect of carrying mutations of particular

genes on post-breast cancer survival using a latent variables approach, incorporating family



information. Frailty models, in which each family’s overall risk can be modeled as a random
effect, have also been explored in the context of cohort studies on disease onset (Petersen et

al. 1996).

While cohort studies allow for representative samples from the population about which
inferences are desired, a difficulty in analyzing the relationship between genetic information
and disease onset in this context is that a substantial number of individuals may have
died due to the disease prior to the time DNA sampling begins. Ignoring these individuals
would normally lead, without proper adjustment, to biased inferences due to a survivor
effect. Furthermore, health studies are often concerned with multiple manifestations of a
disease process. For example, studies on cardiovascular diseases, including the Framingham
Heart Study, may be concerned with different cardiovascular events (ischemia, myocardial
infarction, etc.) that may be triggered by common physical causes. The possibility for
multiple diseases and missing genetic information motivate the need for a more complete

statistical framework to assess genetic factors for disease onset in prospective cohort studies.

This article develops a statistical framework for inferring genetic and environmental ef-
fects on disease onset in cohort studies when DNA sampling may have occurred substantially
after study inception. Our framework multivariately models disease onset ages conditional
on genetic and environmental covariates. Our framework also accounts for missing genetic
information that may have arisen from subjects dying prior to DNA sampling. Furthermore,
our framework can be applied to studies involving multiple diseases in which the disease
processes are suspected to have a common physiological etiology. We discuss the model de-
velopment and approach to inference in Section 2. We explore sensitivity to large amounts
of missingness in the data in Section 3 based on the analysis of simulated data. In Section 4,

we apply our approach using data from the Framingham Heart Study to measure the effect



of Apo-E genotypes on the development of certain cardiovascular disease (CVD) events. We

discuss the limitations and extensions of our framework in Section 5.

2 Multivariate statistical model for disease onset

Consider a cohort of n subjects who are free of K genetically-related and irreversible diseases
under investigation. We assume that covariate information is collected at baseline, but that
genetic information may be obtained a substantial time beyond the study inception for
subjects remaining in the cohort. For subject i, let A;1,..., A;x be the onset ages of the K
diseases. Our framework assumes that all subjects would eventually contract all diseases,
though censoring due to death or study termination prevents some or all of these events
from being observed. In contrast to cure rate models considered by Berkson and Gage
(1952) and, more recently, Chen et al. (1999), our assumption may be reasonable if it is
believed that other factors besides the genes and measured covariates contribute to disease
onset. Let W,; = (Wj,...,Wiu) be a vector of M binary indicators for the genotype of
subject 7. A typical application would involve one of several genes or their mutations at a
particular gene locus, or combinations of genes at several loci. In the latter case, only one
of the W;,,, would be 1, and the rest 0 for subject 7. Our framework also allows the W;,, to
represent binary indicators of gene presence or absence at M different loci, if interest centers
on the effect of several particular genes in combination. Furthermore, let X; = (X;1, Xj0)
denote a vector of covariates measured at baseline, partitioned into two sets. One set, X1,
consists of environmental factors, comorbidities, and other health factors that are believed
to be causally unrelated to the genetic factors considered in the study. The second set, X;q,
consists of health factors that may be causally related to the genetic factors. It is assumed

that prior information exists that allows the investigator to separate covariates into these



two categories. Because the goal of our framework is to model the direct effects of genes,
it is important to treat these “causal” covariates separately in our model to avoid potential

confounding.

As is common with parametric survival models, we consider a Weibull distribution for

disease onset age given by
Air | X4, Wi, B, A,y ~ Weibull (g, A) (1)

with density

A _
f(Aik | pir, A) = ;A?k "exp(— A/ pak)-

ik

where
log(uir) = (X1)iBr + Wiy (2)

Our onset age distribution depends on the disease and subject only through Weibull scale
parameter p;. The parameter p;, is composed of the additive effects of covariates Xj;
through a linear term with i, and of genetic factors W; through a linear term depending

on parameters 7.

We further model the covariates that are possibly causally related to the genetic factors,
X2, as a function of the W through the general location model of Olkin and Tate (1961).
This model assumes that the X;, are partitioned into continuous and categorical covariates.
The categorical covariates are modeled multinomially (usually with log-linear constraints),
as in a contingency table. Conditional on the categorical covariates and parameters, the
continuous covariates appropriately transformed are assumed to follow a multivariate normal
distribution. A more complete discussion of general location models, including inference in
the presence of missing data, can be found in Schafer (1997). This model is sufficiently flexible

to be able to describe a wide class of covariate collections without introducing undesired



computational complexity.

Because the W; = (W;y,..., W) are missing for some i, our model specification is
completed by assuming a model for the W,. In the most general situation where the W,

are indicators of different genotypes, we assume
W, | @ ~ Multinomial(1, 7r) (3)

for M-vector parameter 7. Depending on the nature of the problem, constraints can be
imposed on the multinomial model. For example, log-linear constraints may be appropriate
if modeling genotypes which are the composition of genes at multiple loci. If the W; are

indicators of particular genes of interest at M loci, then we may assume, independently,
Wim | Tm ~ Bernoulli(7,,) (4)

form=1,..., M.

When disease onset is not observed for all K diseases, we assume for our modeling frame-
work that censoring was noninformative (see, for example, Kalbfleisch and Prentice, 1980).
If censoring is due to dropout or study termination, then clearly the potentially observable
disease onset is not affected. If health-related death is the cause of censoring, then one
might contemplate that, given a subject’s health at the time of death, onset age for the
censored diseases would have likely occurred soon after censoring. However, as noted by La-
gakos (1979), typical structural assumptions about informative censoring mechanism could
be incorporated but that they would be untestable without further assumptions. In our
framework, informative censoring assumptions are not only untestable, but rely on making
modeling assumptions of disease onset after death. It should be noted that in some appli-
cations noninformative censoring is not a sensible assumption, and our framework would

therefore not be appropriate.



The specific choice of a prior distribution must be made on a case-by-case basis. It is
sensible, for example, to choose a prior that factors into independent densities of each model
parameter. A natural choice for the contribution to the prior by the 7, is a non-informative
Dirichlet density, if the W; are assumed to come from an unconstrained multinomial distri-
bution. Alternatively, if information about the mode of gene inheritance is known, possibly
through genetic information obtained on family members, this can be incorporated into

modeling the 7,,.

The framework described in (1)—(3) jointly models disease onset ages and genetic factors
accounting for the possibility that a non-trivial fraction of subjects are censored prior to
genetic testing. A feature of our framework is that each subject has simultaneously any
number between 0 through K disease onset ages A;i, ..., A;x observed, though any or all
may be censored. Our framework can be viewed as a type of model for multiple survival

outcomes, but with potentially a large amount of missing information.

To aid in causal interpretation of our model, a conditional independence assumption is
made. In particular, the models for age of disease onset only depend on genetic factors, W,
and covariates that do not relate to genetic factors, X;. Conditional on genetic factors, the
onset ages do not depend on health factors, X5, that are believed to be causally related to
the genes. Because our model is constructed to measure genetic effects in an observational
framework, the only allowable covariates that may be incorporated are ones that are unre-
lated to the “treatment” (genotype). If X, were included in the onset age model along with
W, then the likely result is that the estimated effect of genotype would be inappropriately
lessened in magnitude as some of the genotypic effects would be absorbed into the estimated
effect of X5. The covariates, X1, may be viewed as risk adjusters that do not interfere with

causal inferences but are incorporated to increase precision.



The model for X5 conditional on W is included in our framework to improve the accuracy
of inferring the multinomial probabilities of W. Our framework recognizes that a substantial
number of subjects may have missing values for W, so that our model allows the missing
W to be inferred via Bayes rule conditional on the X5. This in turn improves inferences for

the onset age parameters because the missing W are more precisely described.

In modeling the effect of the genetic and environmental factors, we assume that the
health/environmental parameters, f, are random effects from a common distribution. This
aspect of the framework allows the parameters to differ for each disease, but the random
effects assumption recognizes the potential similarity of the effects so that information across
diseases is pooled. If the onset of different diseases in a disease cluster stem from similar
environmental and genetic etiology, then it is not unreasonable to assume that their effects
on the disease onset are similar. The pooling of information by assuming a random effects
distribution also can increase precision of the inferences. In contrast, we assume that genetic
effects are common to the different onset age models. By assuming identical contribution
of the genetic factors to the different onset age distributions, we recognize that the effects
of genes are common to diseases with similar disease etiology. While it is not necessary
in modeling the effects of genotypes to assume a common form (the genotypic effects can
be modeled as separate effects), precision in inferences can be gained by assuming identical
effects. The extra precision can be important when a substantial fraction of a cohort has

missing genetic information.

The approach to modeling identical genetic effects for related diseases is similar to prob-
lems that involve summarizing health effects from many variables to produce a single overall
summary health score, which can then be used in subsequent analyses. Two such com-

monly used scores are the APACHE-II score (Knaus et al. 1985) and the Medicare Mortality



Prediction Study score (Daley et al. 1988). These types of severity scores have been used
successfully in health outcome models, such as in Normand et al. (1996). Our approach, in
contrast, allows all effects to be inferred simultaneously. Because much of our interest is on
the effects of the genetic factors, the contribution of (X7)}8, to the onset age models may

be understood as a covariance adjustment.

Instead of modeling onset age distributions as Weibull, a wide variety of models could
be considered, such as log-normal and Gamma if interest lies in parametric modeling, or
semi-parametric models such as Cox’s proportional hazards model. A recent review of semi-
parametric survival modeling techniques, appropriate for use in our framework, can be found
in Sinha (1997). We argue for the use of parametric modeling in our context because disease
onset ages are of crucial interest, and that potentially a large amount of missing data often
requires stronger modeling assumptions. The effectiveness of parametric hazards is argued

by Efron (1988), and more recently by Gelfand et al. (2000), for such situations.

Inference for our model can be performed using Markov chain Monte Carlo (MCMC)
methods, such as the Gibbs sampler (e.g., Gelfand and Smith 1990). The algorithm can
be implemented by alternately sampling from the following three conditional posterior dis-
tributions: the distribution of the missing A;; given model parameters, observed data, and
complete genetic information; the distribution of the missing genetic information W; given
model parameters and disease onset ages; and the distribution of the model parameters given

complete genetic information and disease onset ages.

Sampling from the conditional posterior distribution of missing onset ages is straightfor-
ward. Let @; be the (observed) censoring age. Then the conditional posterior distribution

of missing A; follows (1) over the range (Q;, o0), appropriately renormalized. With our



Weibull model, values may be simulated using standard inverse-cdf methods.

Sampling from the conditional posterior distribution of the missing genetic factors, W,
for subject i is also a straightforward procedure. The conditional posterior mass function for
Wim given observed data and the current draws of other parameters and missing data can
be obtained through Bayes rule by evaluating the unnormalized posterior density, and then
normalizing by their sum over the M values. Similar conditional posterior sampling can be

carried out when the W; are assumed, for example, product binomial.

The conditional posterior distribution of model parameters can be accomplished following
Dellaportas and Smith (1993), who discuss fitting survival models with Weibull hazards.
The problem fits naturally into their framework because the problem of simulating model
parameters within an iteration of Gibbs sampling has been reduced to simulating parameters

from a survival model with no censoring.

3 Sensitivity analysis

Our framework can be demonstrated on simulated data in order to examine the sensitivity
to the large amount of missing onset age and genotypic information in typical applications.
Suppose interest lies in measuring the effect of different genotypes at two different loci on the
onset of four related diseases. For simplicity, assume that at each locus one of two genotypes
can be observed, independently. A simulated sample of 1000 subjects were generated as
follows. Let W;; and W;,, for + = 1,...,1000, each be 0 or 1, depending on the genotype at
the locus. A value of 0 indicates the presence of a mutation that is likely to lower disease
onset age, while a value of 1 is protective. We generated W;; = 1 and W;s = 1 with

probabilities 0.3 and 0.2, respectively. Three non-causal covariates (X;1, Xio, X;3) and one

10



causal covariate (X;4) were also simulated. The first two covariates (X;1, X;2) were binary (0
or 1), with X;; =1 and X;2 = 1 generated with probabilities 0.3 and 0.45 respectively. The
third covariate, X;3, was simulated from a normal distribution with mean 250 and standard
deviation 35. The fourth covariate, X;4, was simulated from a normal distribution with

variance 10, and with a mean, px,,, that depended on the genotypes,
tx;e = Yo + 11 Wi + 72 Wis
where vy = 20, 7, = 10, and vy, = 5.

Disease onset ages for the four diseases, A;;, for j = 1,...,4, were generated from a

R

Weibull model where

Aik ~ Weibull(,uik, A)

with A = 1.5 and

log pik = Bro + Br1 Xir + BraXiz + BraXiz + BraWir + BrsWia.
The generating values of the fi; are displayed in Table 1.

Disease censoring ages (due to death or study termination) were simulated from a N(70, 5?)
distribution. Independently, ages at which DNA samples were obtained were simulated from
a N(76, 5?) distribution. When the minimum censoring age was less than the simulated
DNA sampling age, the DNA sampling was assumed not to have occurred, and the genetic
information was set to be missing. This resulted in only 187 of the 1000 original simulated

subjects to have observed DNA information.

Two analyses were performed. The first analysis was based on only using the 187 of
the 1000 subjects that had observed genetic information. The second analysis is the same

as the first, except incorporating the partial information (incomplete genetic information,
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censored disease onset ages) for all 1000 simulated subjects. This is the situation that our
modeling framework demonstrates potential benefits. Both models were fit using MCMC
simulation from the posterior distribution, using a burn-in of 5,000 iterations and summa-
rizing inferences based on every 20th iteration of a subsequent 10,000 iterations. Table 1
presents the results of the simulations. The table shows that both analyses produce similar
point estimates for the $s and the vs. The posterior intervals for the reduced sample analysis
are uniformly wider, reflecting a smaller overall sample. Specifically, the posterior standard
deviations of the §i; for the reduced-sample analysis were on average 2.11 times as large as
the corresponding posterior standard deviations in the full-sample analysis. The modeling
framework for the full sample analysis takes advantage of information contained in X, in
making inferences about the missing W; and W, so that the estimates of the onset age

parameters are more accurate than in the reduced sample analysis.

It is also worthwhile to note that among the sample of 1000 subjects, 30.3% were gener-
ated to have W;; = 1 and 19.0% to have W;, = 1. Among the 187 subjects who were not
censored prior to randomly generated DNA sampling ages, the proportion with W;; = 1 was
32.1%, and with W;, = 1 was 27.9%. These percentages, particularly for W;,, are larger
than those of the original 1000 because the subjects with either W;; = 0 or W;, = 0 tended
to die before DNA testing, so proportionately fewer of such individuals remained in the
smaller sample. The modeling framework that allows for censored genotypes successfully
estimated the generated proportions; the estimated proportion (that is, the posterior mean)
with W;; = 1 was 28.3%, and with W;, = 1 was 21.0%, with 95% posterior intervals covering

the generating values of 0.3 and 0.2, respectively.
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Reduced Sample Analysis

Full Sample Analysis

Generating || Posterior Posterior || Posterior Posterior
Parameter Value Mean 95% Interval Mean 95% Interval
Bi1 0.05 -0.145 (-0.547, 0.207) 0.0936 (-0.0716, 0.251)
Ba1 —-0.10 0.057 (—0.435, 0.528) 0.0268 (—0.161, 0.230)
Bs1 -0.15 —0.283 (-0.714, 0.131) —0.249 (-0.424, —0.0559)
Ba 0.2 —0.388 (-0.915, 0.113) —0.392 (-0.623, -0.189)
B2 -0.05 -0.135 (-0.521, 0.215) -0.120 (-0.268, 0.0303)
Ba2 0.05 0.121 (—0.231, 0.536) 0.174 (-0.0117, 0.337)
B32 0.00 0.137 (—0.240, 0.489) -0.0724 (-0.235, 0.0993)
Bao 0.03 0.023 (-0.369, 0.367) -0.0210 (-0.182, 0.161)
B3 0.0005 0.00403 | (-0.000895, 0.00907) 0.00134 | (-0.000625, 0.003352)
B3 0.0007 | 0.00194 | (—0.00431, 0.00846) || 0.000323 (-0.00239, 0.00299)
B33 0.0007 || 0.00306 | (—0.00140, 0.00796) || 0.000112 (-0.00216, 0.00240)
Bas 0.0005 0.00432 | (—0.000535, 0.00973) 0.00195 | (-0.000550, 0.00439)
B1a 0.3 0.496 (0.109, 0.835) 0.542 (0.351, 0.733)
Boa 0.5 1.042 (0.635, 1.475) 1.057 (0.856, 1.248)
B34 0.6 0.871 (0.502, 1.276) 0.950 (0.743, 1.137)
Buaa 0.7 1.065 (0.660, 1.469) 1.068 (0.852, 1.259)
Bis -0.03 -0.189 (-0.595, 0.227) -0.370 (-0.683, —0.0146)
Bas 0.03 —0.0980 (—0.625, 0.385) -0.0763 (—0.458, 0.267)
Bss 0.05 0.519 (0.0870, 0.926) 0.402 (0.110, 0.711)
Bus —0.01 0.324 (—0.134, 0.791) 0.224 (—0.148, 0.572)
Yo 20 20.01 (19.35, 20.64) 20.09 (19.76, 20.42)
" 10 9.47 (8.22, 10.61) 9.70 (9.16, 10.26)
Yo 5 5.10 (3.86, 6.23) 5.12 (4.24, 5.96)
A 1.5 1.54 (1.42, 1.65) 1.53 (1.47, 1.59)

Table 1: Estimates of model parameters from simulation analyses. The “Reduced Sample”
analysis was based on using only the 187 simulated subjects for whom genetic information
was observed. The “Full Sample” analysis was based on using available information on all

1000 subjects.

distribution using MCMC simulation.
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4 Effect of Apo-E genotype on the Onset of Cardiovas-
cular Disease

We demonstrate the application of the modeling framework in Section 2 to data obtained
from the Framingham Heart Study. Interest of our analysis centers on measuring the fre-
quency of the common Apolipoprotein-E (Apo-E) alleles in the study population, and on the
effects of different Apo-E allelic combinations on the onset of various CVD events stratified by
gender. In particular, we examine the genetic effects on the age of first occurrence of angina
pectoris, recognized acute myocardial infarction, unrecognized (“silent”) acute myocardial
infarction, and congestive heart failure. Unrecognized myocardial infarction is usually identi-
fied upon EKG reading during a physical, and in the Framingham Heart Study such physical
exams were conducted at most every two years. Identification of the risk-adjusted effects of
different Apo-E genotypes has important practical implications for genetic counseling and
preventive medicine. Also, understanding the impact of the Apo-E genotypes on the onset

of CVD events allows for further understanding and exploration of disease etiology.

The Framingham Heart Study, which began in 1948 and initially funded by the National
Heart Institute, is one of the largest ongoing studies conducted to learn about the causes of
heart disease and stroke. Details of the design and methods of the study can be found in
Dawber et al. (1951). The study recruited 5209 men and women between the ages of 28 and
62 from Framingham, Massachusetts, almost all Caucasian, gathering extensive information
every two years from physical exams and interviews. Diagnosis of CVD events were based on
clinical information obtained during study visits, records obtained from personal physicals,
and hospitalizations (Dawber et al. 1951). To increase certainty of diagnosis, a panel of three

physicians reviewed all suspected CVD events to ascertain their occurrence.
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Percent | Average
Disease | Missing Age

Angina Pectoris 81.4 65.06
Unrecognized MI 93.1 70.18
Recognized MI 83.5 69.49
Congestive Heart Failure 83.8 76.04

Table 2: Descriptive summaries of disease onset ages. For each disease, the percentage of
missing (censored) onset ages and the mean onset age among the observed ages are reported.

The cohort we examine consists of 4804 subjects who were free of CVD symptoms at study
entry. For each subject, we collected information on the ages of onset of the four mentioned
CVD events, and the censoring age if any of the diseases did not occur. Table 2 displays
observed information about the four diseases in the study. The frequency of missingness of
the disease onset ages is high in the cohort. For all four diseases, over 80% of the onset ages
are missing, and therefore treated as censored. The average censoring age for this cohort

was 76.55.

Table 3 displays health covariates measured at baseline that we have incorporated into
our analysis. We divide the variables into ones that can be viewed as being causally related
to the Apo-E gene (serum cholesterol levels, phospholipid levels), and ones that are assumed
causally unrelated to the Apo-E genes. Because the Apo-E genes are responsible for choles-
terol transport in the blood, we would anticipate a direct relationship between gene presence
and average cholesterol levels. Health covariates were non-missing for all subjects and reflect

information available at the start of the study.

Blood samples for DNA in the Framingham Heart Study were obtained between 1987
and 1991. Apo-E genotyping was performed as described in Hixson and Vernier (1990). The
Apo-E gene, a gene of current interest in the study of cardiovascular diseases (Eichner et al.

1993, Wilson et al. 1994, Schachter et al. 1994, Stengard et al. 1995), produces proteins that
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Covariates not, | Covariates possibly

causally related to | causally related

to Apo-E alleles | to Apo-E alleles
Cigarettes per day | Serum Cholesterol level (mg/dl)

Forced vital capacity (cl/s) | Phospholipid level (mg/dl)

Serum glucose level (mg/dl)
Systolic blood pressure (mm Hg)
Hemoglobin level (mg/ml)
Body mass index (kg/m?)

Table 3: List of health-related covariates. The first column contains covariates that are
assumed causally unrelated to the Apo-E alleles, and the second column contains covariates
in our model that are assumed casually related to the Apo-E alleles.

Number of | Number of Total Percent of

Genotype Males Females | Number | Non-missing
e2/e2 1 4 5 0.39
e2/e3 51 85 136 10.74
e2/ed 8 14 22 1.74
e3/e3 320 526 846 67.82
e3/ed 85 153 238 18.80
ed/ed 10 9 19 1.50

Table 4: Frequency distribution of genotypes, stratified by gender, in sample of 1266 indi-
viduals with measured genetic information.

are believed to help metabolize certain plasma lipoproteins in the circulation. The three
most common allelic forms of the Apo-E gene are referred to as e2, e3 and e4, which code
for proteins Apo-E2, Apo-E3 and Apo-E4. Consequently, we consider six possible genotypes
formed by pairs of alleles: e2/e2, e2/e3, e2/e4, e3/e3, e3/ed, and ed/ed. Carriers of an e4
allele are understood to be at higher risk for Alzheimer’s disease than individuals without

(e.g., Saunders et al. 1993), though no conclusive evidence exists about the impact on CVD.

Of the 4804 subjects in our analysis, only 1266 (26%) had information recorded about
their Apo-E genotype. Table 4 shows the genotype distribution for individuals with non-
missing genetic information. The e3/e3 genotype is, by far, the most common among the

six. The €2 and e4 alleles are much less frequent than e3.
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Before constructing our model for onset ages of the four CVD events, we examined scatter
plots which suggested transformations of several covariates. In particular, serum glucose level
was incorporated into the model on the log scale, including a quadratic term (again on the
log scale). A quadratic term was included for systolic blood pressure, and a quadratic term
was also included for hemoglobin level. The remaining covariates in the model were included

linearly. Both cholesterol and phospholipid levels remained untransformed.

For k =1,...,4 cardiovascular disease events, we model the onset ages as
A ~ Weibull (g, M) (5)
where
log(pir) = (X1)iBe + Y, 2:- (6)

For subject 7, (X7); is the vector of the non-causal health factors (including a constant for
an intercept term), 3 is a parameter vector specific to disease k, and vy, 7, is the effect of
genotype W; and gender Z;. The parameter vector v therefore only takes on 6 x 2 = 12
values. To avoid parameter aliasing, we impose the constraint that v, ; = 0. Alternative
linear constraints could be imposed as well, such as setting the sum of the v, , to be 0. In
the current parameterization, the v, 4 can be interpreted as the the gender by Apo-E effect

relative to males with the e2/e2 gene.

We assume that (Xs);1, the cholesterol level for subject i at baseline, and (X3);o, the

phospholipid level for subject 7 at baseline, can be modeled as a function of genotype,
(X2)ij ~ N(Wiax;, o%;) (7)

for j = 1,2, where ax; is a vector of genotype effects on causal factor 7, and similarly ag(j is

the corresponding variance. Here, W is a vector of six indicators for Apo-E genotype. This
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component of the model increases the precision of inferences about the missing W; through
their relationship to the cholesterol and phospholipid levels at baseline. Because the utility
of this component of the model is used to improve inferences about the missing W, as a
simple linear model on the mean, rather than make inferences about the parameters of this

model component, it is not necessary to model the correlation structure of Xs.
We model W, the genotype of subject 7, through a multinomial model
W, | @ ~ Multinomial(1, 7r) (8)

where 7 is a vector of length 6 indicating the probabilities of the six genotypes in the study
population, with m; corresponding to e2/e2, my corresponding to e2/e3, w3 corresponding
to e2/ed, m, corresponding to e3/e3, w5 corresponding to e3/e4, and mg corresponding to
ed/ed. We further assume that the genes obey Mendelian inheritance (each allele is inherited
independently from each parent), and that the distribution of alleles in the population is in
Hardy-Weinberg equilibrium (which is crudely supported by the distribution of the observed
data). We assume no effects due to population admixtures. Letting po, p3 and p, represent
the allele frequencies in the study population of Apo-E e2, e3 and e4, respectively, these

assumptions can be modeled as m = p3, Ty = 2paps, T3 = 2paPs, T4 = P3, Ts = 2pP3py, and

2
Te = Dj-

To reflect our initial uncertainty, a non-informative proper prior factoring into locally
non-informative independent densities was assumed for all model parameters. The linear
parameters in the onset age models had normal densities with mean 0 and variance 1000, the
variance parameters were assumed to have Gamma distributions with mean 1 and variance
10, the cholesterol and phospholipid parameters in (7) were assumed normal with mean

200 and variance 10000, and the parameters (ps, ps, p4) have a Dirichlet distribution with

18



parameters (0.05,0.85,0.10). The weakly informative Dirichlet parameters were chosen to be
consistent with previous findings on Apo-E allele frequencies, while allowing the likelihood
to dominate inferences. It should be noted, however, that it is not necessary to incorporate
such information into the prior distribution; for example, assuming equal values for the p;
would be appropriate if no additional information were available. Estimates of these allele
frequencies, which are known to vary in different populations, can be found, for example, in

Hallman et al. (1991) and Louhija et al. (1994).

A single series Gibbs sampler with over-dispersed starting values was run for a burn-in
period of 5,000 iterations. The sampler was continued another 4,000 iterations, subsampling
all missing data and parameters every 8 iterations. The subsampling was performed both
to reduce autocorrelation in the successive Gibbs draws, and to conserve disk space. The
sampler was implemented in BUGS (Spiegelhalter et al. 1996). Convergence of the Gibbs
sampler was assessed from these 4,000 simulated draws through trace plots, and simple
diagnostics that compare parameter sample means from early parts of the series to later parts
(Geweke 1992). Posterior summaries were computed from the 500 subsampled simulated

values.

The results of the model fit indicate that the covariates unrelated to genes accounted for
significant variability in onset ages. Marginal central posterior intervals of the components
of the B in (6) reveal that smoking history, systolic blood pressure, and body mass index
were uniformly important risk adjustment variables for onset age of all four disease models.
Other covariates, such as forced vital capacity and serum glucose level, were important for
some disease onsets but not others. These results were determined from 95% central Monte

Carlo posterior intervals.
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95% Central
Genotype | Posterior Interval
e2/e2 | (0.0039, 0.0052
e2/e3 | (0.0965, 0.1106
e2/ed | (0.0204, 0.0244
e3/e3 | (0.5731, 0.6037

(

(

e3/ed | (0.2424, 0.2647
ed/ed | (0.0245, 0.0304

e | e [ e | | e [ —

Table 5: 95% central posterior intervals of, 7, the genotype frequencies.

Posterior summaries also revealed that the six genotypes were associated with differing
levels of cholesterol and of phospholipid levels. Figure 1 shows the distribution of oy, and
ax, in (7). The posterior simulated values shows clearly differing distributions, and that
subjects with genotype e2/e4 are most strongly associated with increased cholesterol and
phospholipid levels. The mean cholesterol and phospholipid levels for subjects with the
e2/e2 genotype have large posterior variability, which is a reflection of the small number of
such subjects in the data set. The information in Figure 1 suggests that subjects with missing
genetic information will, with large probability, be inferred to have the e3/e3 genotype if
their cholesterol and phospholipid levels are high (not e2/e4 because the frequency of this

genotype is low), and e2/e3 if cholesterol and phospholipid levels are low.

We also calculated estimated marginal posterior intervals for the three allele frequen-
cies. The Monte Carlo 95% central posterior intervals for ps, p3, and p4, respectively, are
(0.0626, 0.0724), (0.7571, 0.7770), and (0.1565, 0.1744). The corresponding 95% central
posterior intervals for genotype frequencies, 7r, are given in Table 5. In comparison to Ta-
ble 4, it is worth noting that a substantially smaller proportion of the subjects with missing
genetic information are inferred to have the “normal” genotype e3/e3 than the observed
67.8%. Similarly, a great proportion of subjects with missing genetic information are in-

ferred to have the e2/e4, e3/ed and ed/ed genotypes. This result may reflect the model’s

20



ability to detect that the Apo-E e4 allele is related to early censoring.

The genotypic effects, represented by the marginal posterior distribution of the v, 4, are
shown in Figure 2 as boxplots of MCMC samples stratified by gender. The parameters
were transformed to sum to 0. Larger values of v, , correspond to later disease onset.
The analysis shows that, for both males and females, the e2/e4 genotype is associated with
earlier onset of cardiovascular disease. On average, men appear to experience earlier onset
of cardiovascular diseases. To estimate the difference of the e2/e4 and e3/e3 genotypes on
survival, we first note that the median onset age of disease k for subject i is My = (g In2)7.
For a subject with average covariates, the posterior mean of M;;, the median onset age for
angina, is computed to be 95.82 when the subject has genotype e3/e3, and is computed
to be 73.43 when the subject has genotype e2/e4. The large median onset age for angina,
particularly for “normal” e3/e3 subjects, is consistent with the low frequency of its occurrence
in the Framingham population, as most people with the e3/e3 genotype would die before the
potential onset of angina. The posterior mean of the ratio of medians is a 29% lower median
for e2/e4 genotypes. Men appear at higher risk of early cardiovascular disease than men if
they have the e2/e2 genotype, though the evidence suggested by the model fit is not strong
due to the large variability in parameter inferences for the effect of the e2/e2 genotype. In
fact, the effect of the e2/e2 genotype for males has very large variability because the sample
contains only one male with the e2/e2 genotype who had no measured CVD events, and who

died at age 80 for non-CVD related health causes.
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5 Discussion

The framework presented in this paper offers a flexible approach to modeling the genetic
impact on multivariate survival outcomes when genetic information is missing due to death
prior to DNA sampling. Our approach allows for a substantial fraction of missing genetic
information, as the genotyping is inferred from “causal” covariates measured at baseline.
These covariates are used to reduce the bias due to dropouts that have been censored for
reasons related to the disease process under investigation. Because we fit the models within a
Bayesian framework, missing onset ages and genotypes can be addressed in a straightforward

manner.

An aspect of our framework, which can be viewed as both a strength and a limitation,
is the use of common genotypic effects on the collection of onset age distributions. This
assumption is only appropriate if the diseases under study are believed to have a common
underlying etiology. For measuring the onset of cardiovascular diseases, this assumption
seems appropriate, as different cardiovascular events arguably have similar causes. The
assumption of common effects might not be appropriate, for example, for different forms
of cancer, or for multiple unrelated disease events. In cases where a moderate to large
proportion of subjects have missing DNA information, assuming a common effect across

diseases can also increase precision of inferences.

Our approach to inferring missing genetic information can be used to great advantage
if covariates possibly causally linked to the genotypes are judiciously chosen and included
in the model. For the cardiovascular disease example, the inclusion of baseline cholesterol
and phospholipid levels allow greater probability of recognizing that subjects with missing

genetic information are associated with the rarer genotypes. This occurs through the re-
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lationship of genotypes among subjects with observed genetic information with cholesterol
and phospholipid levels. It could be argued that, because cholesterol and phospholipid levels
vary over time, other time-adjusted summaries of this information could be incorporated
into the model. The inclusion of such time-varying factors is, however, outside the scope of
this work, as measurements obtained beyond baseline could be confounded with a subject’s

disease status. Our framework for causal covariates does not directly address this situation.

In principle, our model could include a subject-specific frailty component by including
a random effect per subject in (1). This approach was applied to model for recurrences
of kidney infection in McGilchrist and Aisbett (1991). The difficulty with the inclusion of
subject-specific frailties in our model is that many subjects have all censored onset ages for
each disease, and missing genetic information, so that the frailty of such subjects is aliased
with onset ages. The additional external structure required for identifiability is beyond the

scope of this work.

The framework in this paper is flexible enough to allow a variety of extensions. For
example, the model can be extended to include a frailty component to account for family
effects, or for the inclusion of pedigree information. Extensions such as these can improve
the precision of inferences on the genetic effects on disease occurrence, and can result in a

greater understanding of disease etiology and, ultimately, disease treatment and prevention.
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Figure 1: Estimated posterior distribution of ax, and ayx,. Top: Posterior distribution of
mean cholesterol level by genotype. Bottom: Posterior distribution of mean phospholipid
level by genotype.
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Figure 2: Estimated posterior distribution of 7, 4, the effect of genotype on CVD onset
age. The effects were normalized to sum to 0. Top: The distribution of v, ;, the effect

of genotypes on CVD onset age for males. Bottom: The distribution of 7, 2, the effect of
genotypes on CVD onset age for females.
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