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Basic Bayesian Methods

Mark E. Glickman and David A. van Dyk

Summary
In this chapter, we introduce the basics of Bayesian data analysis. The key ingredients to a 

Bayesian analysis are the likelihood function, which refl ects information about the parameters 
contained in the data, and the prior distribution, which quantifi es what is known about the 
parameters before observing data. The prior distribution and likelihood can be easily combined 
to from the posterior distribution, which represents total knowledge about the parameters after 
the data have been observed. Simple summaries of this distribution can be used to isolate quantities 
of interest and ultimately to draw substantive conclusions. We illustrate each of these steps of a 
typical Bayesian analysis using three biomedical examples and briefl y discuss more advanced 
topics, including prediction, Monte Carlo computational methods, and multilevel models.

Key Words: Monte Carlo simulation; posterior distribution; prior distribution; subjective 
probability.

1. Introduction
As with most academic disciplines, researchers and practitioners often choose 

from among several competing schools of thought. In music, for example, some 
composers have been guided by the rules of Romanticism, Impressionism, or 
Atonality in developing their work; in art, painters have at various periods fol-
lowed the rules of Cubism, Expressionism, or Dadaism with widely differing 
results. One might assume that a scientifi c discipline such as statistics is immune 
to such philosophical divides. Interestingly, this is not the case. Statistics, as a 
discipline, consists of two main competing schools of thought: The frequentist
or classical approach to statistical inference, and the Bayesian approach. The 
frequentist approach, which includes hypothesis testing and confi dence inter-
vals as two of the main modes of inference, has been the main framework for 
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most of the techniques discussed thus far in this book. We discuss the basics 
of the Bayesian approach in this chapter.

The underlying difference between the Bayesian and frequentist approaches 
to statistical inference is in the defi nition of probability. A frequentist views 
probability as a long-run frequency. When a frequentist asserts that the proba-
bility of a fair coin tossed landing heads is 1-2, he means that in the long run, 
over repeated tosses, the coin will land heads half the time. In contrast, a Baye-
sian, who will also surely say that the probability a coin lands heads is 1-2, is 
expressing a degree of belief that the coin lands heads, perhaps arguing that 
based on the symmetry of the coin there is no reason to think that one side is 
more likely to come up than the other side. This defi nition of probability is 
usually termed subjective probability. Whereas, in practice, a frequentist uses 
probability to express the frequency of certain types of data to occur over 
repeated trials, a Bayesian uses probability to express belief in a statement about 
unknown quantities.

These defi nitions have profound impact on a framework for statistical infer-
ence. Because a Bayesian uses subjective probability, he can describe uncer-
tainty of a statement about an unknown parameter in terms of probability. A 
frequentist cannot. So, for example, it is legitimate for a Bayesian to conclude 
as a result of a data analysis that an interval contains a parameter of interest 
with 95% probability. A frequentist, in contrast, will use probability to describe 
how often the calculations that produce an interval will cover the parameter of 
interest in repeated samples. For instance, frequentist 95% confi dence intervals 
have the property that, in the long run, 95% of such intervals will cover the 
parameters being estimated. But, unfortunately for the frequentist, once a set 
of data is observed and an interval is computed, the frequentist concept of prob-
ability is no longer relevant. Further, when a Bayesian is evaluating two com-
peting hypotheses about an unknown parameter, he can calculate the probability 
of each hypothesis given observed data and then choose the hypothesis with 
the greater probability. A frequentist, on the other hand, cannot use probability 
in such a direct way, and instead will approach the problem asymmetrically 
and ponder the long-run frequency under one of the hypotheses of sampling 
data as extreme or more extreme than what was observed.

This chapter describes the basics of Bayesian statistics. We begin by describ-
ing the main ingredients of a Bayesian analysis. In this discussion, we explain 
how to obtain the posterior distribution of model parameters and how to obtain 
useful model summaries and predictions for future data. We then demonstrate 
an application of the Bayesian approach to multilevel models, using Monte
Carlo simulation as a computational tool to obtain model summaries.

2. Fundamentals of a Bayesian Analysis
A typical Bayesian analysis can be outlined in the following steps.
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 1. Formulate a probability model for the data.
 2. Decide on a prior distribution, which quantifi es the uncertainty in the values of 

the unknown model parameters before the data are observed.
 3. Observe the data, and construct the likelihood function (see Section 2.3) based on 

the data and the probability model formulated in step 1. The likelihood is then 
combined with the prior distribution from step 2 to determine the posterior dis-
tribution, which quantifi es the uncertainty in the values of the unknown model 
parameters after the data are observed.

 4. Summarize important features of the posterior distribution, or calculate quantities 
of interest based on the posterior distribution. These quantities constitute statistical 
outputs, such as point estimates and intervals.

We discuss each of these steps in turn in Sections 2.1–2.4.
The main goal of a typical Bayesian statistical analysis is to obtain the pos-

terior distribution of model parameters. The posterior distribution can best be 
understood as a weighted average between knowledge about the parameters 
before data is observed (which is represented by the prior distribution) and the 
information about the parameters contained in the observed data (which is 
represented by the likelihood function). From a Bayesian perspective, just about 
any inferential question can be answered through an appropriate analysis of the 
posterior distribution. Once the posterior distribution has been obtained, one 
can compute point and interval estimates of parameters, prediction inference 
for future data, and probabilistic evaluation of hypotheses. Predictive inference 
is the topic of Section 2.5.

2.1. Data Models

The fi rst step in a Bayesian analysis is to choose a probability model for the 
data. This process, which is analogous to the classic approach of choosing a data 
model, involves deciding on a probability distribution for the data if the parame-
ters were known. If the n data values to be observed are y1,  .  .  .  , yn, and the vector 
of unknown parameters is denoted q, then, assuming that the observations are 
made independently, we are interested in choosing a probability function p(yi | q)
for the data (the vertical bar means “conditional on” the quantities to the right). In 
situations where we have extra covariate information, xi, for the ith case, as in 
regression models, we would choose a probability function of the form p(yi | xi, q).
When the data are not conditionally independent given the parameters and covari-
ates, we must specify the joint probability function, p(y1,  .  .  .  , yn | x1,  .  .  .  , xn, q).

Example 1

A random sample of 300 women aged 60–69 years whose immediate fami-
lies have had histories of cancer are to be screened for breast cancer. Let yi be 
1 if woman i has a positive test, and 0 if not, for i = 1,  .  .  .  , 300. Let q be the 
probability that a randomly selected woman aged 60–69 years with a family 
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history of cancer has a positive breast cancer screening. Then an appropriate 
model for the data is to assume that the yi independently follow a Bernoulli 
distribution with probability q, that is,

p(yi | q) = q yi(1 − q)1−yi

for i = 1,  .  .  .  , 300.

Example 2

A random sample of 50 men with a history of cardiovascular disease enters 
a study on LDL (low-density lipoprotein) cholesterol. Let yi be the LDL cho-
lesterol level (in mg/dL) for man i, i = 1,  .  .  .  , 50. A reasonable probability 
model for LDL cholesterol levels is a normal distribution. We can assume that 
the yi are independently normal with unknown common mean m and variance 
s2. The probability function for yi is given by

p y yi iµ σ
πσ

µ σ, exp2

2

2 21

2
2( ) = − −( )( )

for i = 1,  .  .  .  , 50.

2.2. Prior Distribution

Once the data model (probability model) is chosen, a Bayesian analysis 
requires the assertion of a prior distribution for the unknown model parameters. 
The prior distribution can be viewed as representing the current state of knowl-
edge, or current description of uncertainty, about the model parameters prior 
to data being observed.

Approaches to choosing a prior distribution divide into two main categories. 
The fi rst approach involves choosing an informative prior distribution. With this 
strategy, the statistician uses his knowledge about the substantive problem 
perhaps based on other data, along with elicited expert opinion if possible, to 
construct a prior distribution that properly refl ects his (and experts’) beliefs 
about the unknown parameters. The notion of an informative prior distribution 
may seem at fi rst to be overly subjective and unscientifi c. In response to this 
concern, it should be pointed out that the selection of a data model, which a fre-
quentist needs to make, is also a subjective choice, so that frequentist analyses 
are not devoid from subjectivity either. Furthermore, it can be argued that if extra 
information or knowledge about the model parameters exists prior to observing 
data, it would be unscientifi c not to incorporate such information into a data 
analysis. For example, in a study measuring the weight of preterm births, it 
would be sensible to incorporate into the prior distribution that the “prior proba-
bility” of a mean birth weight above 15 lb is negligible. Another criticism by 
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frequentists of using informative prior distributions is that two Bayesian statisti-
cians are likely to use two different prior distributions, which leads to two dif-
ferent sets of inferences for the same scientifi c problem. Again, it is reasonable 
to respond to this criticism by pointing out that when frequentists use different 
data models on the same data, conclusions will be different as well. From a 
Bayesian point of view, a prior distribution is part of the overall statistical model, 
so that two Bayesian statisticians selecting different prior distributions is analo-
gous to two frequentist statisticians choosing two different data models.

The second main approach to choosing a prior distribution is to construct a 
noninformative prior distribution that represents ignorance about the model 
parameters. Besides noninformative, this type of distribution is also called 
objective, vague and diffuse, and sometimes a reference prior distribution. 
Choosing a noninformative prior distribution is an attempt at objectivity by 
acting as though no prior knowledge about the parameters exists before observ-
ing the data. This is implemented by assigning equal probability to all values 
of the parameter (or at least approximately equal probability over localized 
ranges of the parameter). The appeal of this approach is that it directly addresses 
the criticisms of informative prior distributions as being subjectively chosen. 
In some cases, there is arguably a single best noninformative prior distribution 
for a given data model, so that this prior distribution can be used as a default 
option, much like one might have default arguments in computer programs. 
Unfortunately, noninformative prior distributions are not without their prob-
lems either. First, because there are various commonly accepted criteria for 
constructing noninformative prior distributions, it is rare that, for a given data 
model, all these criteria produce the same unique noninformative prior distribu-
tion. Second, some common methods for constructing noninformative prior 
distributions, such as always assuming a uniform distribution for a parameter, 
result in an interesting inconsistency. Any method for constructing a noninfor-
mative prior distribution ought to be invariant to the measurement scale of the 
parameter; if, for example, the method of constructing a noninformative prior 
distribution is applied to a data model with parameter q, and then applied to 
the same model reparameterized with parameter h = log(q), it would be desir-
able that the distributions on q and h were representing equivalent probabilistic 
information. It turns out that this is a diffi cult criterion to satisfy (one approach 
constructed to satisfy this invariance criterion is Jeffrey’s rule, which works 
well with one-parameter data models but with mixed results for multiparameter 
models). Finally, many commonly used methods for constructing a noninforma-
tive prior distribution result in probability functions that integrate to infi nity, 
usually called improper distributions, and are not formally probability distribu-
tions. Luckily, for many problems, having an improper prior distribution still 
allows for a coherent Bayesian analysis.
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In general, if an objective prior distribution is desired, one defensible strategy 
is to construct a relatively uniform proper (i.e., integrates to 1) prior distribution. 
If the information contained in the data is supposed to be the main determining 
factor in producing statistical inferences (as it should be), then we should expect 
that the choice among a range of relatively fl at prior distributions will not make 
much of a difference. On the other hand, if the choice of a relatively fl at prior 
distribution does matter, this may be an indication that the data conveys little 
information about the parameter of interest, and it may be appropriate to rethink 
the form of the data model, or to collect additional data.

Example 1 (Continued)

Recall that q is the probability a randomly selected woman, aged 60–69 years 
with a family history of cancer, has a positive breast cancer screening. Accord-
ing to the American Cancer Society, roughly 3.6% of women aged 60–69 years 
develop invasive breast cancer, so that we may form an informative prior dis-
tribution for q that refl ects this information. A fl exible choice of a prior distribu-
tion for a Bernoulli probability is q ∼ Beta(a, b), that is, q has a Beta distribution 
with specifi ed parameters a and b. The probability function is given by

p θ α β α β
α β

θ θα β,( ) =
+( )

( ) ( )
−( )− −Γ

Γ Γ
1 11

where Γ() represents the Gamma function.1 The mean of a Beta distribution is 
a/(a + b). The value a + b has an interpretation as the amount of information 
about q viewed as a sample size. For the cancer screening problem, the choice 
q ∼ Beta(0.36, 9.64) is sensible, as this distribution has a mean of 0.36/(0.36 +
9.64) = 0.036, the estimate given by the American Cancer Society, and the 
information represented by this distribution is equivalent to that in 0.36 + 9.64
= 10 data values. A plot of the probability function is given in Figure 1. Note 
that the greatest probability under this distribution of q is concentrated around 
very low values, which is meant to refl ect our initial belief that a value of q
much larger than 0.1 or 0.15 is not very plausible. With an eventual sample of 
500 observations, the data is about 50 times more informative than the prior 
distribution.

Example 2 (Continued)

For studying LDL cholesterol levels, we assume a noninformative prior dis-
tribution for the mean m and variance s 2 of the normal data model. A strategy 

1 The Gamma function is closely related to the factorial function: For a positive 
integer n, Γ(n) = (n − 1)!. For more details about the Gamma function, see (1).
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that can often be employed for models with multiple parameters is to consider 
each parameter separately and form the joint prior distribution as a product of 
the several independent distributions.

The most common noninformative choice for a location parameter, such as 
a mean (or a regression coeffi cient), is to assume an improper uniform distribu-
tion over the entire real line. Thus we assume

p(m) = 1

for −∞ < m < ∞ even though this function does not integrate over the range. 
We further assume, independently, that the prior distribution for s 2 is the 
improper probability function

p(s 2) = 1/s 2.

By a change-of-variables argument from elementary calculus, this distribution 
on s 2 corresponds with a uniform distribution on log(s 2) over the entire real 
line. Besides having the appeal of placing a uniform distribution over a para-
meter that has been transformed to take values over the entire real line, as with 
m, this prior distribution also recognizes that extremely large values of s 2 are 
less believable a priori than are small values. A uniform distribution on 
the untransformed variance, s 2, in contrast, asserts that a variance between 
1,000,000 and 1,000,001 is as likely a priori as a variance between zero and 
one, which is not particularly believable. We therefore assume an improper 
joint prior distribution for (m, s 2) equal to

p(m, s 2) = p(m)p(s 2) = 1 ⋅ (1/s 2) = 1/s 2.

0.0

0
5

10
15

θ

p(
θ)

1.00.80.60.40.2

Fig. 1. Probability function for the Beta(0.36, 9.64) distribution.
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2.3. From the Likelihood to the Posterior Distribution

Once the data has been observed, the likelihood function, or simply the 
likelihood, is constructed. The likelihood is the joint probability function of the 
data, but viewed as a function of the parameters, treating the observed data as 
fi xed quantities. Assuming that the data values, y = (y1,  .  .  .  , yn) are obtained 
independently, the likelihood function is given by

L y p y y p yn i
i

n

θ θ θ( ) = ( ) = ( )
=

∏1
1

, , .…

In the Bayesian framework, all of the information about q coming directly from 
the data is contained in the likelihood. Values of the parameters that correspond 
with the largest values of the likelihood are the parameters that are most sup-
ported by the data.

To obtain the posterior distribution, p(q | y), the probability distribution 
of the parameters once the data have been observed, we apply Bayes’ 
theorem:

p y
p p y

p p y d

p L y

p y
p L y( )

( ) ( )

( ) ( )

( ) ( )

( )
( ) ( )q q q

q q q
q q q q= = ∝

∫
where “∝” means “is proportional to” (i.e., that the expressions are equal when 
the right-most term is multiplied by a normalizing constant that doesn’t depend 
on q). Operationally, therefore, it is straightforward in principle to obtain the 
posterior distribution: Simply multiply the prior distribution by the likelihood, 
and then determine the constant (not depending on q) that forces the expression 
to integrate to 1. An effective strategy for computing the posterior distribution 
is to drop multiplicative constants from the prior distribution and likelihood 
that do not depend on q, and then in the fi nal step determine the normalizing 
constant.

Example 1 (Continued)

Suppose, for the breast cancer screening study, 14 of the 300 women had 
positive tests. Thus 14 women have yi = 1, and the remaining 286 have yi = 0. 
The likelihood is therefore given by

L y y y

i

i i( ) ( ) ( )q = − = −−

=
∏θ θ θ θ1 11

1

300
14 286 .

The posterior distribution is proportional to the product of the Beta prior dis-
tribution (with parameters a = 0.36 and b = 9.64) and the likelihood,
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L y p L y( ) ( ) ( )
( )

( . ) ( . )
( ). .q ∝ ∝ −⎛

⎝⎜
⎞
⎠⎟ ⋅−θ θ θ θ θΓ

Γ Γ
10

0 36 9 64
10 64 8 64 114 286

0 64 8 64 14 286 13 36 294 64

1

1 1 1

( )

( ) ( ) ( ). . . .

−

∝ − ⋅ − ∝ −−

θ

θ θ θ θ θ θ .

Note that the normalizing constant in the prior distribution was dropped as 
it does not depend on q. Rather than determine the normalizing constant analy-
tically, we notice that the fi nal expression is proportional to a Beta distribution 
with parameters a = 14.36 and b = 295.64, so that the posterior distribution 
must be

p y( )
( )

( . ) ( . )
( ). .q = −

Γ
Γ Γ

330

14 36 295 64
113 36 294 64θ θ .

Thus, the posterior distribution is q | y ∼ Beta(14.36, 295.64).

Example 2 (Continued)

In the LDL cholesterol study, suppose the 50 LDL cholesterol measurements 
are taken. The likelihood is the product of 50 normal probability functions:

L y p y yi
i

i
i

( ) ( , ) exp( ( ) )

(

µ σ µ σ
πσ

µ σ

πσ

, 2 2

1

50

2

2 2

1

50 1

2
2

1

2

= = − −

=

= =
∏ ∏

22 25

2 2

1

50

2
)

exp .− −( )⎛
⎝⎜

⎞
⎠⎟=

∑ yi
i

µ σ

Letting y
n

yi i= =∑1
1

50  and s y yi i
2

1
50 21

49
= −=∑ ( )  be the sample mean and vari-

ance, respectively, the likelihood can be rewritten in a more useful form as

L y yi
i

µ σ
πσ

µ σ

πσ

, 2( ) = − −⎛
⎝⎜

⎞
⎠⎟

=

=
∑1

2
2

1

2
4

2 25
2 2

1

50

2 25

( )
exp ( )

( )
exp 99 50 22 2 2s y+ −( )( )µ σ .

We again use the standard choice of noninformative prior distribution on the 
parameters of a normal model, p(m, s 2) = 1/s 2. With this choice of prior dis-
tribution, the posterior distribution can be computed as follows:

p y p L y s y( ) ( ) ( )
( )

exp( ( ( ) )µ σ µ σ µ σ
σ πσ

µ, , ,22 2
2 2 25

2 21 1

2
49 50∝ ∝ ⋅ − + − 22

49 2
1

2 50

2

2 25 5 2 2 2
2

σ

σ σ
σ

µ σ

)

( ) exp( ) exp ( ) ( ).∝ − ⋅ − −( )− s y .
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The second term in the above expression, as a function of m with the appropriate 
constant, is a normal distribution with mean ȳ and variance s 2/50. The fi rst 
term, with the appropriate constant, is an inverse-c2 distribution; this means 
that 1/s 2 has the more familiar chi-square distribution. The posterior distribu-
tion p(m, s 2 | y) therefore factors into a marginal posterior distribution of s 2,
p(s 2 | y), which is inverse-c2, and a conditional posterior distribution of m given 
s 2, p(m | s 2,y), which is normal. A marginal posterior distribution specifi es the 
posterior distribution for a subset of the model parameters without regard to 
the other parameters. A conditional posterior distribution, on the other hand, is 
the posterior distribution of a subset of the parameters subject to the other 
parameters having specifi ed values.

In this example, the joint posterior distribution can be written

p(m, s 2 | y) = p(s 2 | y)p(m | s 2, y)

where s 2 | y ∼ Inv-c2(49, s2) (i.e., 49s2/s 2 has a chi-square distribution on 49 
degrees of freedom), and m | s 2, y ∼ N(ȳ, s 2/50). Once the sample mean and 
sample variance have been computed from the data, these values can be sub-
stituted in to obtain the actual distributions. It is also worth noting that s2 can 
be integrated out of the joint posterior density to obtain the marginal posterior
density of m, which is

m | y ∼ t49(ȳ, s2/50),

that is, a t-distribution with 49 degrees of freedom that is centered at ȳ and res-
caled by s/ 50.

2.4. Posterior Summaries

Once the posterior distribution has been determined, inferential conclusions 
can be summarized with an appropriate analysis. Point estimates of parameters 
are commonly computed as the mean or the mode (i.e., highest point) of the 
posterior distribution. Interval estimates can be calculated by producing the end 
points of an interval that correspond with specifi ed percentiles of the posterior 
distribution. For example, a 95% central posterior interval involves computing 
the 2.5%-ile and 97.5%-ile of the posterior distribution. Probabilities of com-
peting composite hypotheses can be evaluated by calculating their posterior 
probability, that is, the probability of the hypotheses based on the posterior 
distribution.

Example 1 (Continued)

With a posterior distribution for the probability of a positive breast cancer 
screening of Beta(14.36, 295.64), we can compute informative inferential sum-
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maries about q. The posterior mean and posterior mode are the two most 
common point estimates for a parameter. For a Beta distribution with parame-
ters a and b, the mean is a/(a + b), and the mode is (a − 1)/(a + b − 2). The 
posterior mean estimate of q is therefore

E(q | y) = 14.36/(14.36 + 295.64) = 0.0463.

The posterior mode estimate of q, the most “believable” value of q, is

Mode(q | y) = (14.36 − 1)/(14.36 + 295.64 − 2) = 0.0434.

To construct a 95% central posterior interval for q, we need to fi nd the 
appropriate percentiles of the Beta(14.36, 295.64) distribution. Analytically, 
this involves evaluating the integral ∫0

c
p(q | y)dq = 0.025 and solving for c to 

obtain the lower end point of the interval, and similarly for the upper end point. 
Using statistical software (like R or S-Plus, SAS, Stata, SPSS, etc.), the per-
centiles can easily be evaluated numerically. The 2.5%-ile and the 97.5%-ile 
of the posterior distribution are computed to be 0.0259 and 0.0723, respectively, 
so that the 95% central posterior interval for q is (0.0259, 0.0723). There is a 
0.95 posterior probability that q lies in this interval.

Suppose for health policy reasons that it is important to know whether 
q > 0.05. We can translate the question into a posterior probability computation 
of

P( 0.05 )= .
0.05

1
θ θ θ> ( )∫y p y d

Rather than attempting to evaluate this Beta integral analytically, we can evalu-
ate it numerically using statistical software. The probability from the Beta 
posterior distribution is computed to be 0.351, which implies that the probabil-
ity q < 0.05 is 0.649. Thus we may conclude that it is more likely than not that 
q < 0.05.

Example 2 (Continued)

We computed the joint posterior distribution of m and s 2, the mean and vari-
ance of the normal model, in the LDL cholesterol study. This posterior distribu-
tion depends on the data through the sample mean and sample variance of the 
50 measurements, ȳ and s2, respectively. Now suppose that upon observing the 
measurements, we compute ȳ = 110 and s2 = 100. From a Bayesian perspective, 
the posterior distribution is a complete summary of what we know about the 
parameters, both from the data and—as quantifi ed via the prior distribution—
from other sources of information. In this case, we can plot the posterior dis-
tribution and use the plots to quantify what we understand about the unknown 
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parameters. A contour plot of the joint posterior distribution appears in the fi rst 
panel of Figure 2. The next two panels represent the marginal posterior distri-
butions of m and s 2, respectively. These distributions represent our knowledge 
about likely values of the mean and variance of LDL cholesterol levels in this 
particular population of men. Judging from the posterior distribution of m, the 
mean LDL cholesterol level is about 110 plus or minus about four. The posterior 
distribution of s 2 tells us how much the level varies among men: The variance 
appears to be about 100 but could be as low as 60 or as high as 175. Notice 
that the posterior distribution of s 2 is slightly skewed toward the right. Looking 
at the joint distribution, the mean and variance appear to be uncorrelated. This 
means that inference about particular values of m does not have a relationship 
to our inference about values of s 2.

2.5. Predictive Distributions

One of the benefi ts of the Bayesian approach is that predictive inference is 
a straightforward computation once the posterior distribution has been obtained. 
Suppose we have observed data y = (y1,  .  .  .  , yn), and we would like to make a 
prediction about a future observation y. From an analysis of the data, we have 
obtained p(q | y), the posterior distribution. We are interested in making proba-
bilistic statements about an unobserved y, so that we want to compute the pos-
terior predictive distribution of y. The posterior predictive distribution is written 
as p(y | y). Note that we are not interested in conditioning on parameter values, 
but that we only want to condition on what we have observed: the previous 
data.
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Fig. 2. The posterior distribution of parameters of LDL cholesterol levels. The three 
fi gures depict the 2-dimensional joint posterior distribution of the mean and variance 
of LDL cholesterol in the population of men. A contour plot of the joint distribution 
and plots of both of the marginal distributions are given.
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The posterior predictive distribution can be computed using the equation

p y p y p d( ) ( ) ( )y y=∫ q q q

which makes the often appropriate assumption that future data is independent 
of past data conditional on the parameters. Thus, integrating the product of the 
data model distribution with the posterior distribution with respect to the model 
parameters produces the posterior predictive distribution, which can then be 
summarized for predictive inferences.

Example 2 (Continued)

Let y be an LDL cholesterol measurement taken of a man with a history of 
cardiovascular disease not yet sampled. We are interested in deriving the pos-
terior predictive distribution of y, that is, p(y | y). We must therefore evaluate

p y p y p d d

p y p p d d

( ) ( , ) ( )

( , ) ( ) ( )

y y

y y

= ,

,

µ σ µ σ µ σ

µ σ σ µ σ µ σ

2 2 2

2 2 2 2

∫∫
∫= ∫∫ .

It can be shown that with the normal distribution for y, the normal conditional 
posterior distribution for m given s 2, and the inverse-c2 marginal posterior 
distribution for s 2, the integral is evaluated to

p y
y

s
( )

( )

( )
y ∝ +

−
+

⎛
⎝⎜

⎞
⎠⎟

−

1
50

49 1 1 50

2

2

25
y

which is a t-distribution on 49 degrees of freedom centered at ȳ and
with a scale parameter of s n2 1 1+( ) . (In our example, ȳ = 110, s2 = 100, and 
n = 50.)

3. Application to Multilevel Models
3.1. Monte Carlo Methods

The examples above illustrate how statistical summaries of scientifi c interest 
can be expressed as integrals of the posterior distribution. Although in simple 
cases these integrals can sometimes be computed analytically, in more complex 
realistic examples, numerical methods are required. Even computing a 95% 
central posterior interval for the probability of breast cancer, q, in Example 1
required numerical methods. In this section, we describe Monte Carlo methods, 
which have revolutionized applied Bayesian data analysis over the past 20 
years. Monte Carlo methods are so important because they are often relatively 
easy to understand and implement, yet are powerful enough to enable us to 
compute relevant statistical summaries even when fi tting highly structured 
models.
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As an introduction to Monte Carlo methods, we return to the LDL cholesterol 
study.

Example 2 (Continued)

Monte Carlo methods are simulation-based methods. With a specifi ed prob-
ability distribution, a typical Monte Carlo simulation involves a computer 
program generating multiple plausible values from the distribution. In Bayesian 
data analysis, this generally involves acquiring a sample from the posterior (or 
posterior predictive) distribution. In Figure 3, we compare a Monte Carlo 
sample from the posterior distribution with the three plots of the posterior dis-
tribution given in Figure 2. The key here is that we can draw the same infer-
ences regarding m and s 2 from either the plots of the Monte Carlo sample or 
from the plots of the posterior distribution itself. In addition to the qualitative 
descriptions discussed in Section 2.3, we can compute posterior means by 
averaging over the Monte Carlo sample or compute a 95% central interval, by 
computing the 2.5%-ile and 97.5%-ile of the Monte Carlo sample.

Example 2 is a simple illustration with only two parameters. This makes it 
easy to visually examine the joint posterior distribution and to compute the 
marginal posterior distributions of the parameters of interest. In more complex 
settings, however, the dimension of the unknown parameter may be much 
larger. In image analysis (e.g., functional magnetic resonance imaging), for 
example, there may be an unknown image intensity in each of a large number 
of pixels or voxels. In such settings, there may be hundreds or thousands of 
unknown parameters. It is in such settings that Monte Carlo methods are so 
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Fig. 3. A Monte Carlo sample from the posterior distribution of parameters of LDL 
cholesterol levels. A Monte Carlo sample is compared with each of the 3 plots given 
in Figure 2. The Monte Carlo sample carries the same information about the posterior 
distribution as the analytically computed plots.
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useful. Although we cannot plot the joint posterior distribution or even compute 
the high-dimensional integrations that are required to evaluate the marginal 
posterior distributions of low-dimensional quantities of scientifi c interest, we 
may be able to acquire a Monte Carlo sample from the posterior distribution. 
That is, although we cannot produce plots analogous to those in Figure 2, we 
can produce scatter plots and histograms analogous to those in Figure 3. From 
these representations of the Monte Carlo sample, we can construct statistical 
inferences for unknown quantities of scientifi c interest, even in highly complex 
models. This strategy is illustrated in a more complex setting in Section 3.2.

There are a variety of techniques available for acquiring a Monte Carlo 
sample from a given posterior distribution. Perhaps the most important class of 
such techniques is known as Markov chain Monte Carlo (MCMC). It was the 
development of MCMC in the statistical literature, starting in the late 1980s, 
that greatly expanded the class of models that can be fi t using Monte Carlo 
techniques. An important example of MCMC is the Gibbs sampler. Rather than 
directly acquiring a Monte Carlo sample from the posterior distribution, the 
Gibbs sampler cycles through a set of conditional posterior distributions, sam-
pling from each distribution conditional on the most recent draw of the remain-
ing parameters. Because the conditional distributions involve a smaller number 
of unknown parameters, they tend to be simpler to simulate. Carefully designed 
Gibbs samplers allow highly complex models to be divided into a sequence of 
simpler more standard models, all of which can be fi t using standard Bayesian 
statistical techniques. The iterative nature of the Gibbs sampler (and other 
MCMC techniques) means that it can be sensitive to starting values, and its 
Monte Carlo nature means that convergence diagnostics can be subtle. Here, 
we have only scratched the surface of the numerous technical issues involved 
in designing, implementing, and detecting convergence of MCMC samplers. 
Nonetheless, interpreting the scientifi c results is done in much the same way 
as with the Monte Carlo methods described here. Readers interested in learning 
more about this important class of Bayesian computational methods are directed 
to the references in Section 4 and the citations therein.

3.2. Multilevel Models

The power of Monte Carlo sampling in conjunction with Bayesian methodol-
ogy is that it allows us to fi t models that are explicitly designed to capture the 
complexity of any given data generation mechanism. We often accomplish this 
by hierarchically combining a series of simple models into a single more appro-
priate model. In this section, we illustrate this strategy in an extended example. 
Although this example is relatively simple by current standards, we hope that 
it will give the reader a fl avor for how multilevel models are constructed and 
for the power of combining Monte Carlo sampling with Bayesian methods.
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Example 3

In an experiment described by Weil (2), 32 pregnant female rats were divided 
into 2 groups. In the control group, the mothers were fed a control diet during 
pregnancy and lactation. In the second group, the mothers’ diets were treated 
with a chemical. The number of pups in each litter that survived 4 days was 
recorded as the litter size. Of these, the number that survived the 21-day lacta-
tion period were also recorded. For our purposes, we consider only the treat-
ment group and investigate how the probability of 21-day survival varies among 
the litters in this population and fi t the probability of survival for each of 
the 16 observed treatment litters. The data for the treatment litters appear in 
Table 1, which records the size of each litter (number of pups that survive for 
4 days) and number of these that survive for 21 days.

We begin by formulating a probability model for the data. For each litter, 
let ni be the size of the litter and yi be the number of pups that survive the 21-
day lactation period. We assume the pups within each litter have equal probabil-
ity of survival and use a binomial distribution to model the number that survive. 
In particular, we assume yi | qi ∼ Binomial(ni, qi), that is,
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Because we believe the survival rates vary among the litters, we allow qi to 
depend on i. The distribution of the qi is of primary interest in this study (in 
particular, we may be interested in how the distribution is affected by the treat-
ment). Therefore we introduce a probability model for the qi. As discussed in 
Example 1, the Beta distribution is particularly well suited for modeling prob-
abilities. Thus, we assume qi ∼ Beta(a, b). The parameters a and b determine 
the shape, mean, and variability of the Beta distribution and thus of the survival 
probabilities among litters in the treatment group.

Table 1
Data for the 16 Litters of Rats in the Treatment Group

 Litter

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Size 12 11 10 9 11 10 10 9 9 5 9 7 10 6 10 7
Surviving 12 11 10 9 10  9  9 8 8 4 7 4  5 3  3 0

The litter sizes and the number of pups surviving the 21-day lactation period are recorded.
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In Example 1, we used prior information as to the probability of breast 
cancer to set the values of a and b. In this case, however, a and b are fi t to the 
data to describe the distribution of the survival probabilities. Because a and b,
both restricted to be positive, are treated as model parameters, we must decide 
on prior distributions for these 2 parameters. Here we choose independent 
noninformative prior distributions that are uniform on log(a) and log(b). As in 
Example 2, this corresponds with prior distributions that are proportional to 
the reciprocal, that is, p(a, b) ∝ 1/ab.

Combining the two parts of the specifi cation of the data model with the prior 
distribution leads to a 3-level model. In particular, the statistical model can be 
formulated as a Beta-binomial model (3) with noninformative prior distribution 
as follows:

Level 1: yi | qi ∼ Binomial(ni, qi) for i = 1,  .  .  .  , 16.
Level 2: qi | a, b ∼ Beta(a, b) for i = 1,  .  .  .  , 16.
Level 3: p(a, b) ∝ 1/ab.

Level 1 specifi es the 16 within-litter distributions, level 2 describes the vari-
ability among the litters in the treatment population, and level 3 is the (nonin-
formative and improper) prior distribution. This is a simple illustration of how 
standard probability distributions can be combined hierarchically to form more 
complex and more appropriate models—models that can more fully describe 
the richness of the data generation mechanism.

With the data model, prior distribution, and observed data in hand, we con-
struct and compute the posterior distribution as described earlier. We acquire a 
Monte Carlo sample from the joint posterior distribution of (q1,  .  .  .  , q16, a, b).
Figure 4 represents the Monte Carlo sample from the marginal posterior 
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Fig. 4. A Monte Carlo sample from the joint posterior distribution of a and b.
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distribution of a and b, and Figure 5 represents a sample from the marginal 
posterior distributions of q4, q13, and q16. In this case, the plots in Figure 5
are more relevant because the parameters are more easily interpreted: they are 
the marginal posterior distributions of the survival probabilities for 3 of the 
litters.

Comparing the three plots in Figure 5, it is clear that the survival probabili-
ties vary among the litters. To explore this further, we can acquire a Monte 
Carlo sample from the predictive distribution of the survival probability of 
another litter. A histogram of this Monte Carlo sample appears in the fi rst panel 
of Figure 6. This distribution accounts for both the variability among the litters 
and the uncertainty in the distribution of the survival probabilities. These two 
variance components correspond with the variability among the histograms in 
Figure 5 and the uncertainty in a and b illustrated in Figure 4, respectively. 
The fi nal histogram in Figure 6 is a Monte Carlo sample from the posterior 
predictive distribution of the number of surviving pups for an additional litter 
of size 10. This distribution accounts for both the variability in q as represented 
by the fi rst histogram in Figure 6 and for the binomial variation of pup 
survival.

We can fi t the survival probabilities of each of the 16 litters by averaging 
over the Monte Carlo sample of each of these 16 parameters. The results, along 
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Fig. 5. Histograms of the Monte Carlo sample of the survival probabilities of 3 
of the litters. The solid circles on the horizontal axis of each of the histograms represent 
the sample proportion of the pups that survived in that litter. Notice that in all 3 cases 
the histograms have their centers of mass a bit off of the sample proportion, in the 
direction of the fi tted population mean of 0.74. This is known as shrinkage: the posterior 
mean “shrinks” from the sample proportion toward the fi tted population mean.
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with the sample proportion of surviving pups in each litter, appear in Table 2.
Notice that in each case, the fi tted probability is between the sample proportion 
and the expected survival probability of a new litter, 0.74. Although the sample 
proportion is the standard estimate of the survival probability for a single litter, 
like all statistical estimates, these have error because of the variable nature of 
binomial data. Because we are simultaneously fi tting the population distribution 
of survival probabilities, we have some information as to the direction of the 
estimates’ error. The Bayesian estimate is an average of the population mean 
and the sample proportion. As the size of the litter increases, this average is 
weighted more heavily toward the sample proportion. These fi tted values are 
often called shrinkage estimates because they “shrink” the fi tted probability 
from the sample proportion toward the population mean. Shrinkage is automatic 

Fig. 6. Monte Carlo samples from the posterior predictive distribution. The fi rst 
histogram represents a sample from the predictive distribution of the survival probabil-
ity of another litter from this population. The second histogram corresponds with a 
sample from the predictive distribution of the number of surviving pups from this 
additional litter, given that the litter is of size 10.

Table 2
Shrinkage

 Litter

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sample 1.00 1.00 1.00 1.00 0.91 0.90 0.90 0.89 0.89 0.80 0.78 0.57 0.50 0.50 0.30 0.00
Fitted 0.96 0.96 0.95 0.95 0.88 0.87 0.87 0.86 0.86 0.78 0.77 0.61 0.55 0.57 0.38 0.18

The sample proportion of surviving pups and the fi tted probability of survival are recored for each of the 16 litters. Each of the 
fi tted values is between the population mean (0.74) and the sample proportions for the particular litter.
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when the Bayesian posterior distribution is used to generate statistical 
estimates.

4. Other Resources
In this chapter, we have introduced only the most basic aspects of Bayesian 

modeling, methods, and computation. There are a number of accessible treatises 
on Bayesian methods that interested readers might refer to, including Gelman 
and others (4) and Carlin and Louis (5), both of whom offer excellent 
introductions.
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