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Abstract

Measuring the causal effect of a treatment from observational data is often difficult because
the treatment status of a subject may be confounded with non-randomized factors, such as those
that affect a subject’s choice of treatment. An approach to remedying this problem is through
the use of instrumental variables. We extend the instrumental variables framework proposed
by Angrist, Imbens and Rubin (1996) by introducing a latent “threshold to receive treatment”
parameter for each unit in the study. Incorporation of latent thresholds in the model permits
the inclusion of discrete or continuous instruments, covariate information, and flexible choices
of distributions. We apply our methodology to examine the effect of cardiac catheterization on
short-term survival of a cohort of elderly heart attack patients.

Keywords: Acute myocardial infarction, causal inference, iterative simulation, observational
studies, treatment effect.

1 Introduction

A major difficulty in measuring treatment effects in non-randomized observational studies is
that a subject’s treatment status may depend on confounding factors that can also affect the sub-
ject’s response. An approach to address this problem involves the use of instrumental variables
techniques. The main difference between instrumental variable methods and covariate adjustment
approaches is that the former assumes that the treatment assignment is non-ignorable, and requires
the presence of an “instrument” in order to reduce or remove confounding bias. An instrumental
variable is designed to balance unobserved covariates across treatment groups so that the mech-
anism by which units obtain values of an instrument may be considered ignorable. In addition

to balancing unobserved covariates, an instrumental variable is assumed to covary with treatment



status. Identifying a variable satisfying these conditions can often be difficult. In some instances,
an instrumental variable can be found that is explicitly randomized to units, in which case the
instrument clearly balances unobserved covariates. For example, randomized studies confounded
with treatment non-compliance may be analyzed by employing treatment assignment as an instru-
ment (Rubin 1998, Imbens and Rubin 1997a). However, most applications of instrumental variable

techniques must be argued on a case-by-case basis.

Exploration of the instrumental variables approach within the statistics community has been
attracting more attention. Nagelkerke, Fidler and Buwalda (1988) use an instrumental variable
approach to make inferences about disease statuses of patients from diagnostic tests. Angrist
and Krueger (1992) use instrumental variables to measure the effect of age at school entry on
educational attainment. Stefanski and Buzas (1995) examine an instrumental variable approach to
binary response regression. Work by Angrist et al. (1996) and Imbens and Rubin (1997a) present a
more foundational approach and lay out assumptions to develop models with binary instrumental

variables for inferring causal effects.

This article develops a general framework for Bayesian inference for a particular class of in-
strumental variable models. Our model, which is founded on the assumptions laid out in Angrist
et al. (1996) specifies the effect of the instrumental variable through a conditional structure via
unobserved latent variables. As we subsequently describe, these latent variables have the natural
interpretation of being the individuals’ “thresholds” to receive treatment, and the inclusion of these
latent variables extends the work of Angrist et al. to permit greater modeling flexibility while still
retaining their basic assumptions. For example, our framework allows for multi-valued instrumental
variables, a variety of distributional assumptions for the data, and for the incorporation of covariate
data. We note, however, that with greater flexibility in modeling, there is greater room for model
misspecification and overfitting. Thus model diagnostics and selection are particularly important

components in our framework.

We present our modeling framework for inferring causal effects with instrumental variables in
Section 2. We show how the assumptions of Angrist et al. can be combined into a parametric
model by the inclusion of a latent threshold parameter for each unit. Innovations in computational
methods for model fitting through Markov chain Monte Carlo simulation, and in particular the
Gibbs sampler (e.g., Gelfand and Smith 1990), permit straightforward inferential procedures. We
apply our approach in Section 3 to measure the effect of cardiac catheterization on a cohort of

elderly heart-attack patients. We discuss limitations and extensions of our model in Section 4.



2 A latent threshold parameter model

Our interest centers on measuring the causal effect of a dichotomous treatment, denoted D,
on a response, denoted Y, from an observational study involving n subjects. For the development
of our model, three variables (and possibly covariates) are observed for each subject: the binary
treatment status D; for subject ¢, with D; = 0 when subject 7 is exposed to control and D; = 1
when subject ¢ is exposed to treatment; an instrumental variable Z; for subject ¢; and one of
two potential responses, Y;; and Yjg, corresponding respectively to the response when subject i is
exposed to treatment or to control. Under our framework, at most one of Y;; or Y;g can be observed,
so the unobserved response (or, more precisely, averages of unobserved responses) must be inferred
in the model fitting process. Both sets of outcome variables, Y;; and Yjy, and the instrumental
variable, Z;, can be discrete, continuous, or mixtures of discrete and continuous. The difficulty
in measuring the causal effect of treatment from observational data is that a subject’s treatment
status, D;, may depend on factors that are related to the subject’s potential responses Y;; and
Yo, so that an analysis which ignores these confounding factors will result in incorrect inferences.
Intuitively, the instrumental variable, Z;, can often be thought of as taking on randomly assigned
values (as if the Z; themselves were randomized), but having a strong relationship to treatment
status. Instrumental variable techniques remove or reduce confounding by projecting the Y;1, Y;o,

D; and the covariates into the space spanned by the Z;.

We make four assumptions commonly used in instrumental variable models. The first is the
Stable Unit Treatment Value Assumption (SUTVA), as described by Rubin (1978, 1980, 1990).
Under this assumption, observed or potentially observed values for a subject are unaffected by those

of any other subject. The second assumption, often termed “exclusion restriction,”

is that potential
responses Y;y and Y;; do not depend on the value of the instrumental variable Z;. This assumption
is discussed in econometric literature on instrumental variables, and more recently in Angrist et
al. (1996). Viewing treatment status, D;(Z;), as a function of Z;, the third assumption is the
monotonicity of D; with respect to Z;. We assume that for any two potentially observed values of Z;,
2 < 24, that D;(z}) < D;(23) for all 5. This assumption asserts a particular functional relationship
between Z; and D; that ensures the identifiability of treatment effects. Other assumptions can
be used in place of monotonicity (e.g., constant treatment effect) as required. Finally, we assume
that the mechanism generating the Z; is ignorable (Rubin 1978). Thus, the Z; are assumed to be

independent of unobserved information.

The four underlying assumptions can be unified into a single framework by making use of the



following key idea. For monotonicity to hold, a subject will be exposed to “treatment” when the
subject’s value of Z; is high, and will be exposed to “control” when Z; is low, assuming a subject
is willing to belong to either group. At some point between these extremes, a subject must possess
a “threshold” value that partitions the values of Z into those that result in the subject’s exposure
to the treatment and those that result in the subject’s exposure to the control. In this formulation
of the problem, the exposure status depends exclusively on whether Z; is greater or less than
the subject’s threshold. A threshold for one subject can clearly be different from another, and
potential responses Y;q and Y;; will typically depend on a subject’s threshold. It is the introduction
of a subject’s threshold parameter into the modeling framework that permits a characterization of

a large and flexible class of models for causal effects using instrumental variables.

More formally, let I'; be the latent threshold parameter for subject 7 that determines treatment

status given the value of Z;. Conditional on IT';, the treatment status of subject ¢ is given by

(1 iz
={y WAzn 0

The model in (1) is equivalent to the definition of monotonicity described earlier under a mild
regularity condition. To prove equivalence, it is straightforward to see (1) implies that for any
2} < z3 and conditional on any fixed I'; = «y, then D;(z}) < D;(z3). The converse can be shown by
construction, making the mild assumption that D; is right-continuous with respect to z. We can
then choose

Iy =inf{z: D; = 1},

which satisfies the conditions of our definition. If unit 7 would never be exposed to treatment, then
we set ['; = oo; if unit 2 would always be exposed to treatment, then we set I'; = —oo. Note that
in many cases I'; need not be uniquely defined, particularly when Z is a discrete variable, but this

poses no difficulties in the development of the model.

The I'; can be viewed not just as parameters in a latent probability model, but as potentially
observable quantities. If, in an experimental setting, one could observe for subject ¢ many values of
the instrumental variable along with the resulting treatment status, then I'; could be determined by
noting the value of the instrumental variable at which treatment status switches. Thus the I'; are
interpretable as quantities that could be known if appropriate data were collected on individuals.
In typical studies, where only a single value of Z; is observed for each subject, the I'; would need
to be inferred in the model fitting process. Specifically, once Z; and D; are observed for unit 4, (1)
constrains the value of T'; to be less than to Z; (if D; = 1 was observed), or greater than or equal
to Z; (if D; = 0 was observed).



Our basic model model assumes the following three general distributional assumptions.

(Yi0,Yi1)|D;, Ty, Z, miym ~  G(yo,y1|Ds, Ts, 5, m) (2)
(1 ifZ>T

Di = {0 if 7, < T (3)

Pilz’iuu’iaﬂ- ~ p(’)’lZi,Ui,’]T), (4)

where z; is covariate data in the response model for subject 7, u; is covariate data (possibly over-
lapping with z;) in the threshold model for subject i, 7 is a vector of model parameters, and G
and p are assumed probability distributions. We also assume the Z; are generated by an ignorable
data mechanism,

where ¢ is an assumed probability distribution, and the parameters n may or may not be known
in advance. In our modeling framework, we condition on the Z; so that inferences about 7 (if 7 is

unknown) are irrelevant.

The (joint) distribution in (2) relates the potential responses to both observed variables (treat-
ment status, covariate data) and latent variables (threshold, other model parameters). The ex-
clusion restriction assumption implies that this distribution does not depend on any of the Z;.
Because at least one of Y;; or Y;g will not be observed, its distribution can be integrated out. An
important feature of the response model is that differences among subjects’ treatment effects not
already explained by observed covariate data z; can be incorporated through the latent threshold
parameter I';. The role of I'; in the response model is therefore to mitigate the bias associated with
unobserved variables. Our framework also permits the inclusion of observed covariate information
in (4), the model for the threshold parameters. An important benefit of having the flexibility to
model the threshold parameters is that covariates might provide information that allow the thresh-
olds to be inferred with greater precision. The stronger the relationship, the more precisely the
latent thresholds can be inferred. This in turn results in less uncertainty about the distribution
for the potential responses, so more precise causal effects can be inferred. We explore threshold

models with covariates in Section 3.2.

The model framework in (2), (3) and (4) explicitly address the SUTVA, the exclusion restriction
of Z; given D;, and the monotonicity of D; with respect to Z;. With ignorability assumed for Z;,
our model can therefore be seen as an extension of the modeling framework of Angrist et al. that
allows for arbitrary distributional assumptions both at the data and threshold levels of the model,

inclusion of covariates, arbitrary functional relationships between covariates and response, and so



on. Some common examples of instrumental variable models for causal effects can be seen as special

cases of our framework.
Ezample 1: Econometric program evaluation models

A class of econometric models that posit a latent variable have been considered by Heckman
and Robb (1985), Heckman and Hotz (1989), and discussed by Imbens and Angrist (1994). Such
models have been used, for example, to determine the effect of manpower training on productivity

or earnings. Letting Y; denote the observed response, a linear response model assumes
Yi=00+ Dip1 + XiBo + € (6)

where X; is a matrix of covariates, and ¢; is an error term centered at 0, and

_J1iDr>0
D’_{O if Df <0’ M
with
D;k = + Xial + Z,‘Oég + Vi, (8)

where v; is an error term centered at 0, Z; is a scalar variable, and Z; are independent of v; and ¢;. In
this model, Y; might be the observed productivity for subject ¢, D; would be an indicator of whether
subject i were selected for a productivity training program, and X; might be socio-demographic

information about subject ¢. Letting

FZ' _ —Qg — Xial —V;

a2

and setting

o1 iz=r
=Yoo ifZ<T;

a special case of our model results. Compared to these linear latent variable models, our framework
has several advantages. First, the latent variable model described above assumes that, conditional
on the covariates, the treatment effect (1 is constant. In contrast, our model does not assume a
constant treatment effect. Differences among subjects due to unobserved variables as they relate
to the response may be difficult to incorporate into (6) in a meaningful way. Secondly, the latent
parameters in the more conventional models lack a natural interpretation which is retained by our
framework. Finally, our framework does not restrict the models to particular functional forms
and distributional assumptions which may be problematic to incorporate in latent variable models
similar to that in (6), (7), and (8).

Ezample 2: Models with a Binary Instrument



Binary instrument models are commonly used to identify causal effects in many applications.
Angrist (1990) examines the effect of Vietnam veteran status on income using draft lottery numbers
(high/low) as an instrument. Imbens and Rubin (1997b) reanalyze data from a study by Angrist and
Krueger (1991) on the effect of education on earnings, using season of birth (first or fourth quarters)
as the instrument. The treatment non-compliance problem, in which the random assignment to
treatment group may be considered an instrument, has been examined by Efron and Feldman (1991)
who, from a randomized clinical trial with non-compliance, measure the effectiveness of a drug
for lowering cholesterol levels. Imbens and Rubin (1997a) present a foundational development of
using instrumental variables in randomized studies involving non-compliance. For concreteness, we
assume that our binary instrument application involves a randomized study with non-compliance,

though our discussion easily extends to other situations with binary instruments.

Assume the binary instrument, Z;, is the treatment assignment variable with Z; = 0 is as-
signment to the control group and Z; = 1 is assignment to the treatment group. Following the
development of Imbens and Rubin (1997a), the monotonicity assumption for a model with an

instrument Z; that takes on values 0 or 1 implies the existence of three types of subjects:

1. subjects for whom D; = 0 always,
2. subjects for whom D; = ¢ when Z; = ¢ for ¢ = 0,1, and

3. subjects for whom D; =1 always.

The first type of subject never takes the treatment regardless of treatment assignment (a “never-
taker”), the second type comply with treatment assignment (a “complier”), and the third type
always takes the treatment regardless of treatment assignment (an “always-taker”). Incorporating
the monotonicity restriction rules out the fourth type of individual who would do the opposite of
the treatment assigned. This setup allows for four types of potential responses; Y;; for always-
takers, Y;o for never-takers, Y;; for compliers, and Y;g for compliers. Causal inference can only be
defined for compliers because only compliers can potentially be observed to take either treatment
or control. It would not be meaningful to consider a causal effect for a noncomplier who could only
ever be exposed to one treatment. It is for the compliers that an average causal effect is of interest.

Imbens and Angrist (1994) refer to the causal effect for compliers as the “local average treatment
effect” (LATE).

To map the problem into our framework, we assume that I'; can take on one of three values in
the set {—0.5,0.5,1.5}. When I'; = —0.5, T'; < Z; for both possible values of Z;, so subject i would



be an always-taker. When I'; = 1.5, T'; > Z; for both possible values of Z;, so subject ¢ would be a
never-taker. Lastly, for I'; = 0.5, D; = 1 when Z; = 1, and D; = 0 when Z; = 0. This corresponds

to subject 7 being a complier.
The four distributions of potential responses in our framework are

Yi|Ti = 05 ~ Gi(y|D=1,T; =—0.5,7)
Yio|l: =05 ~ Gy
Yali =05 ~ Gy
Yoll: =15 ~ Go(y|D=0,T; =1.5,7)

Details for performing likelihood-based inference for such binary instrument models are described
in Angrist et al. (1996).

Inference for specific cases of our general framework can be performed using method of moments,
which is often implemented as a two-stage least squares procedure. Typical application of method of
moments for instrumental variable estimators can be found in standard textbooks in econometrics,
such as Bowden and Turkington (1984). Imbens and Angrist (1994) describe conditions under
which a method of moments instrumental variable estimator can be equated to a weighted sum of
local average treatment effects. Small sample properties of two-stage least squares estimators can
be found, for example, in Buse (1992) and Phillips (1983).

Likelihood-based approaches, including Bayesian methods, have only been investigated in the
context of simple models such as those described in Angrist et al. (1996) with binary instruments,
and in constant treatment effect models as in Heckman and Robb (1985). For our latent threshold
framework, iterative simulation via the Gibbs sampler provides an important tool for model fitting.
We demonstrate this approach in the following section where we infer the causal effect of undergoing

cardiac catheterization on mortality on elderly heart attack patients.

3 Effect of Cardiac Catheterization on Short-term Mortality

McClellan, McNeil and Newhouse (1994), hereafter MMN, and McClellan and Newhouse (1993)
study the benefits for elderly patients of a diagnostic cardiac catheterization during the first or
“index” admission for acute myocardial infarction (AMI). The data from their study included over

200,000 elderly Medicare patients discharged from a hospital with a principal diagnosis of AMI



Sample | Percent Undergoing | Percent
Stratum Total Catheterization Dead
Male 1791 37.2 23.6
Female 1876 26.5 26.5
Non-black 3165 33.1 25.1
Black 502 23.1 25.1
Age 65—69 792 52.1 16.4
Age 70-74 863 45.1 17.3
Age 75-79 832 30.0 22.7
Age 80-84 657 14.0 34.1
Age 85+ 523 4.0 43.6
Urban 2535 36.4 23.6
Rural 1132 21.3 28.5
Total || 3667 | 31.8 | 251 |

Table 1: Distribution of patient covariates and their relationship to 30-day mortality and frequency
of undergoing catheterization. Data were obtained from a cohort of 3667 elderly Medicare benefi-
ciaries residing in Alabama discharged with a principal diagnosis of AMI in 1990.

(all ICD-9-CM codes 410 except those with a 2 in the fifth position) in 1987. Their work used
a generalized method of moments (GMM) instrumental variable approach (Chamberlain 1987)
through a two-stage least squares procedure to estimate a treatment effect from their data. We
reexamine this question in the context of our framework using a data set consisting of 3667 elderly

Alabama, residents admitted to an Alabama hospital in 1990 with a principal diagnosis of AMI.

3.1 Data description

For each patient in the data set, we have recorded whether a patient died within 30 days of ad-
mission to the hospital (Y'), and whether a patient had undergone a cardiac catheterization during
the index admission for the AMI (D). We also consider the following patient covariate information
for modeling 30-day mortality: gender, race (black/non-black), age, and urban/rural status of a pa-
tient’s residence (whether a patient’s residence belongs to a Metropolitan Statistical Area). These
data were obtained retrospectively from Medicare utilization claims data. We discuss other covari-
ate information to include in the threshold model in Section 3.2. Table 1 shows the distribution
of patient covariates and their relationship with 30-day mortality and frequency of undergoing car-
diac catheterization. Approximately 32% of the sample underwent a cardiac catheterization, with
younger patients having more frequent use of the procedure. Males, non-black and urban patients

tend to undergo cardiac catheterizations more often than females, black and rural patients. The



overall mortality rate for the sample was 25%, with older patients experiencing 30-day mortality

substantially more often than younger patients.

We also have recorded the distance between a patient’s residence and the nearest hospital
equipped to perform cardiac catheterizations, and the distance between a patient’s residence and the
nearest hospital not equipped to perform cardiac catheterizations regularly (we treat a hospital as
“equipped” to perform a cardiac catheterization if the hospital performed at least 5 catheterizations
on AMI patients in 1990; this definition is also used by MMN). Distances are measured as the
number of miles between the centroids of zip code areas. These distance measures will be used to

construct the instrumental variable used in our analysis, which we describe below.

The goal of our analysis is to infer the expected difference in 30-day mortality when patients
undergo catheterization versus when patients do not undergo catheterization. Clearly, causal in-
ference is hindered by unobservable biases because the data were not the result of a randomized
design. For example, patient severity on admission is an unobserved factor that may relate to both
the decision to “treat” (catheterization presents greater risk to patients in more serious condition)
and survival probability. To account for these confounding biases, we use an instrument similar to
that described by MMN, and McClellan and Newhouse (1993). We define “differential distance” to
be the distance from a patient’s residence to the nearest hospital equipped to perform a catheteri-
zation subtracted from the distance from a patient’s residence to the nearest hospital not equipped
to perform a catheterization. Intuitively, the larger the differential distance, the more accessible
the hospital with a catheterization facility compared to one without a catheterization facility, so
the greater the chance a randomly selected patient would undergo a cardiac catheterization if the
patient’s differential distance is large than if it is small (or negative). Figure 1 displays the distri-
bution of differential distances in our data set. The differential distances are between —68 and 22.4

miles, with a median differential distance at 0 miles.

MMN argue differential distance as an instrument both intuitively and empirically. They show
that the distribution of virtually all available patient covariates stratified by differential distance
groupings are similar. This adds credibility to the belief that using differential distance may sub-
stantially reduce the impact of hidden biases. As suggested above, monotonicity can be argued
on the grounds that a patient not having undergone a catheterization would not have elected to
undergo a catheterization if he or she lived even farther from a hospital equipped to perform a
catheterization. The exclusion restriction assumption in the context of our example states that
whether a patient would die, given both covariate information and whether a patient underwent a
catheterization, is not affected by a patient’s differential distance. The SUTVA most likely holds for

10



Threshold | Threshold Distance
" —80 miles
Yo —29.9 miles
3 -14.9 miles
Y4 —0.9 miles
5 1.1 miles
Y6 10.1 miles
Y7 30.1 miles

Table 2: Threshold distances for Model 1. The latent variable I'; is assumed to take on one of only
seven values listed above.

our data because the decision for one patient to undergo a catheterization is probably not directly

affected by another patient’s decision.

3.2 Modeling catheterization effect

In this section, we construct four instrumental variable models for measuring the effect of cardiac
catheterization. Our models are four different variations of the framework established in (2), (3),
and (4). For i =1,...,3667, let

v, — 1 if patient ¢ dies within 30 days of hospital admission
v 0 otherwise
1 if patient 7 underwent a catheterization
D;, = .
0 otherwise
Z; = Differential distance stratum for patient %
z; = Vector of mortality covariates for patient @
I'; = Threshold distance for patient z.

Also, denote I'" to be the entire vector of I';, D to be the vector of D;, Y to be the vector of Y;, Z
to be the vector of Z;, and X to the be matrix of z;.

Model 1:

For the first model, we assume that the latent threshold variable, I';, for patient ¢ has a dis-
crete distribution, taking on one of only seven values. The potential values of I'; are displayed
in Table 2. These values were chosen so that the distribution of differential distance were rel-
atively equally balanced between neighboring pairs of thresholds distances. The two outermost

thresholds, corresponding to —80 miles and 30+ miles, represent always-takers and never-takers,
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respectively. For example, suppose a patient lives 20 miles closer to a catheterization facility than
a non-catheterization facility and does not undergo a catheterization. Then this patient’s threshold
to receive treatment must be greater than 20. Among the possible threshold values, v; = 30.1
is the only possibility (this conclusion applies to the model where the ; are discrete variables).
Because this is the highest threshold value, we would conclude that this patient would not undergo
a catheterization at any differential distance. Such patients are likely to be so unhealthy that the

risk operative mortality would be dangerously high.

The model we assume for mortality is
pr(Y; = 1|D,T, Z, X, A, 6, a,p) = logit™ (W] (A + D;é) + za), (9)

where W; is a vector of 7 components with the j-th component W;; = 1 if I'; = ; and W;; = 0
otherwise, A is the vector of effects associated with the threshold groups, ¢ is the vector of interaction
effects of threshold group and treatment status, and « are the covariate effects on 30-day mortality.
The parameters p are discussed below. The term W)(X + D;d) assigns a different treatment effect
(on the logit scale) to each threshold group. This recognizes that the treatment effect may differ
depending on the latent threshold group, I';, to which a patient is inferred to belong. Note that the
first and last components of ¢ are not identifiable because patients for whom I'; = 7; are always

treated and patients for whom I'; = -y7 are never treated, so these two parameters are set to 0.

The model for treatment status can be written as

1 itzi>Ty
D’_{O if 7, <T; (10)

As before, this condition ensures both monotonicity of treatment status with the instrument, and
in conjunction with the model for mortality, ensures the exclusion restriction of the instrument

given treatment status.

We assume a general discrete model for threshold groups,

Wil Z, X, A, 0, a,p ~ Multinomial(1, p), (11)
where p = (p1,...,p7) is a vector of 7 probabilities summing to 1. This model can also be written
as pr(I'; = vj) = p; for all j = 1,...,7, noting the correspondence in representation between I';

and W;. We do not incorporate covariate information at this level of the model as we assume that

the distribution of W; is completely specified given the p;.
We choose noninformative proper prior distributions on the the parameters to reflect our initial

12



Threshold ‘ Threshold Distance

Y —80 miles
Y2 0 miles
¥3 30 miles

Table 3: Threshold distances for Model 2. The latent variable I'; is assumed to take on one of only
three values listed above.

uncertainty,

\d,a ~ N(0,100 - )
p=(p1,.-.,p7) ~ Dirichlet(0.5,...,0.5), (12)

where I is the identity matrix. These prior parameter values were chosen to allow the data to

dominate inferences.
Model 2:

The second model is identical to the Model 1 with one exception. Rather than positing seven
values for I';, Model 2 posits only three. Thus, there are fewer parameters in the model for mortality
(because W; is a vector of only 3 values), and the vector p of multinomial probabilities has three
elements. The model with seven threshold levels may be over-parametrized, and a model that
assumes only three threshold levels may sufficiently describe the variability in thresholds across
units. Table 3 shows the three threshold distances assumed for Model 2. For Model 2, a patient
with I'; = 1 is a never-taker, and a patient with I'; = -y3 is an always-taker. Only when patient %

is inferred to have I'; = 75 is a treatment effect defined.
Model 3:

In the third model, the thresholds are no longer assumed to be discrete, but continuously

distributed. The model we assume for mortality is given by
pr(Y,- = 1‘D, I,Z X,6, Oé) = logit_l(Diép +T';6r + D;Tidpr + x;a) (13)

The parameters ép, or and dpr are the effects of treatment, latent threshold, and their interaction,
respectively. We let § denote the collection of these three parameters. This component of Model 3 is
analogous to Models 1 and 2 where each treatment/threshold combination corresponded to different
effects on mortality. The current model is more restrictive in that the log-linearity of the threshold

effect on mortality is assumed.
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The model for treatment status is assumed to be

1 iZ>Ty
Dz_{() if Z; <Dy (14)

The model in (14) is identical to the model for treatment status in Models 1 and 2.

Finally, the model for thresholds is assumed to be normally distributed, that is
TilZ,X,6,a, p, 0% ~ N(u,o?). (15)
This model assumes that the I'; come from a single normal distribution.

Noninformative prior distributions are assumed for all parameters, that is,

S,a ~ N(0,100-7)
p ~ N(0,10000)
p(6?) « 1/c% (16)

These prior distributions reflect the initial uncertainty in the parameter values.

Model 4:

Model 4 is similar to Model 3 in that the threshold is assumed to be continuous. The difference
is that the distribution of the thresholds are assumed to depend on covariates. Thus, the model for

I'; is a linear regression with
Fi'Z,X,é,Ot,’LLi,,B,O’Q NN(u'IiIBaUQ)a (17)

where u; is a vector of covariates for patient ¢ that relate to explaining the value of the threshold
parameter, and (3 is a vector of the effects of these covariates. The covariates used in this stage
of the model, which are all categorical, are displayed in Table 4. Apart from age information, all
of the covariates at this stage of the model are indicators of comorbid conditions (i.e., conditions
of poor health not directly related to the severity of the patient’s AMI). At the physicians’ discre-
tion, patients who are unhealthy by virtue of having several comorbid conditions do not typically
undergo catheterizations because they typically lead to revascularization procedures such as coro-
nary angioplasty or bypass surgery. Although there is no significant surgical risk associated with
catheterization, the same can not be said of the risk associated with revascularization procedures.
In such a situation, a patient would likely have a large value of I';, and including the comorbid
information would aid in inferring the I'; more precisely. This would in turn result in greater

precision in inferences about the local average treatment effect.
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Covariate for modeling threshold parameters | Frequency in sample
Age 65-69 0.216

Age 70-74 0.235

Age 75-79 0.227

Age 80-84 0.179

Age 85+ 0.143

Cancer 0.021

Connective tissue disorder 0.003

Dementia 0.006

Uncomplicated diabetes 0.093

Diabetes with end organ damage 0.082
Chronically debilitating neurological disorders 0.014
Paralysis 0.003

Chronic pulmonary disease 0.144

Chronic renal failure without dialysis 0.020

Table 4: Covariates for thresholds in Model 4. The covariates include age information and comorbid
conditions. Less than 8-9% of the 3667 patients in the sample experience most of the comorbid
conditions, with the exception of chronic pulmonary disease which affects 14.4% of the sample.

The prior distributions are the same as in Model 3, replacing the prior distribution for y with

B ~ N(0,10000) (18)

Summary of four models:

The key features of the four models can be summarized as follows:

e Model 1: Seven threshold levels modeled multinomially, no covariates in threshold model,
e Model 2: Three threshold levels modeled multinomially, no covariates in threshold model,

e Model 3: Continuous threshold levels assumed to follow a normal distribution, no covariates

in threshold model, and

e Model 4: Continuous threshold levels assumed to follow a normal distribution conditional on

covariates (i.e., linear regression).

3.3 Analysis via iterative simulation

The four models in the preceding section were fit using Markov chain Monte Carlo simulation via
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the Gibbs sampler. This involved iteratively simulating values from three sequences of conditional

posterior distributions. The details of the Markov chain simulation can be found in Appendix A.

For each model, a single “pilot” Gibbs sampler with starting values at the prior means was
run to determine regions of the parameter space with high posterior mass. Four parallel Gibbs
samplers for each model were then run with overdispersed starting values relative to the draws
of the parameter values from the pilot sampler. Each sampler was run for 20000 iterations and
convergence was diagnosed by examining the potential scale reduction (Gelman and Rubin, 1992)
of the parameters in the mortality model, and the parameters in the model for the thresholds.
The potential scale reduction is an estimate of the factor by which the variance of the current
distribution of draws in the Gibbs sampler will decrease with continued iterations. Values near 1
are indicative of convergence. After appropriately transforming variables, all the estimated potential
scale reductions for all parameters based on samples beyond iteration 10000 were no more than 1.02,
which appears close enough to 1 for practical purposes to assume the Gibbs sampler has reached
its stationary distribution. We used the final 10000 posterior draws from each of the four sampler
series in each model as the final sample upon which to base inferences. In addition to producing
model parameter draws for each Gibbs sampler iteration beyond iteration 10000, we also produced
draws of the overall local average treatment effect (LATE), and the LATE stratified by covariates.

3.4 Results

The posterior distribution of the LATE for each of the four models is shown in Figure 2. In
each model, the LATE is calculated at every iteration of the Gibbs sampler for patients having
a defined treatment effect. Patients inferred to have threshold values of 7; and 7 in Model 1,
and ; and 3 in Model 2, are excluded from the LATE calculation because a causal effect is not
defined for these threshold values. In Models 3 and 4, threshold values inferred to be lower than
the minimum differential distance or higher than the maximum differential distance are excluded
from the LATE calculation. The posterior mean LATE for the four models range from —0.146 for
Model 4 to —0.247 for Model 2. Models 1 and 2 show greater variability of the LATE. This is due
to the larger proportion of observations that are excluded when constructing the average treatment

effect.

Table 5 summarizes the posterior distribution of the overall LATE for all four models, and
the distributions stratified by gender, race, age, and urbanicity. The table shows posterior mean

estimates along with central 95% posterior intervals. All four posterior intervals for the overall local
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Stratum H Model 1 ‘ Model 2 ‘ Model 3 ‘ Model 4 ‘

Overall —0.166 -0.247 -0.215 —0.146
(-0.334, —0.005) | (-0.416, —0.063) | (-0.315, —0.120) | (-0.233, —0.064)

Male -0.161 -0.247 -0.215 -0.149
(-0.331, —0.007) | (-0.417, -0.063) | (-0.320, —0.120) | (-0.239, —0.066)

Female -0.170 —0.246 -0.214 -0.143
(-0.340, —0.001) | (-0.417, —0.062) | (-0.312, —0.120) | (-0.230, —0.060)

Non-black -0.165 -0.249 -0.217 —0.148
(-0.335, —0.006) | (-0.419, —0.063) | (-0.319, —0.121) | (-0.236, —0.065)

Black -0.171 -0.237 -0.199 -0.132
(-0.340, 0.016) | (-0.405, -0.058) | (-0.297, —0.109) | (-0.219, —0.052)

Age 65-69 -0.144 -0.233 -0.195 -0.141
(-0.307, —0.004) | (-0.403, —0.057) | (-0.304, —0.102) | (-0.229, —0.064)

Age T70-74 -0.147 -0.229 —0.188 —0.135
(-0.302, —0.003) | (-0.398, —0.055) | (-0.292, —0.100) | (-0.218, —0.060)

Age 75-79 —0.166 —0.242 -0.207 -0.145
(-0.332, —0.003) | (-0.414, —0.060) | (-0.309, —0.114) | (-0.235, —0.061)

Age 80-84 -0.193 -0.266 -0.257 -0.176
(-0.394, —0.003) | (-0.440, —0.070) | (-0.367, —0.144) | (-0.291, —0.064)

Age 85+ —0.205 -0.274 -0.291 —0.189
(-0.435, —0.005) | (-0.449, —-0.074) | (-0.411, —0.154) | (-0.329, —0.056)

Rural —0.166 —0.248 —0.225 -0.153
(-0.343, 0.007) | (-0.412, —-0.065) | (-0.322, —0.130) | (-0.242, —0.067)

Urban -0.165 -0.246 -0.210 -0.143

(-0.337, —0.006)

(-0.420, —0.061)

(-0.314, —0.115)

(-0.231, -0.062)

Table 5: Posterior summaries of the local average treatment effect for each of the four fitted
models. Negative values indicate that undergoing cardiac catheterization increases probability of
30-day survival. The treatment effect for individual strata and the overall treatment effect were
computed from the model fit. For each stratum, the posterior means are displayed with the 95%

central posterior intervals in parentheses below.
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Effect H Model 1 ‘ Model 2 ‘ Model 3 ‘ Model 4 ‘

Female ~0.235 ~0.098 ~0.097 —0.089
(-0.704, 0.100) | (-0.336, 0.135) | (-0.326, 0.130) | (-0.318, 0.142)

Non-white ~0.585 ~0.181 ~0.169 ~0.182
(-1.407, —0.013) | (-0.512, 0.148) | (-0.493, 0.147) | (-0.507, 0.138)

Age 65-69 ~1.933 ~1.092, ~0.993 ~1.133
(-2.932, —1.049) | (~1.485, -0.715) | (~1.457, —0.545) | (~1.537, —0.739)

Age 70-74 ~1.928 ~1.140 ~1.042 ~1.204
(-2.855, —1.100) | (~1.513, -0.782) | (~1.492, —0.600) | (~1.605, —0.813)

Age 75-79 ~1.641 ~0.966 ~0.886 ~1.110
(-2.473, -0.905) | (~1.314, —0.627) | (~1.326, —0.453) | (~1.546, —0.684)

Age 80-84 ~1.150 ~0.557 ~0.485 ~0.802
(-1.951, —0.456) | (~0.895, —0.229) | (~0.920, —0.050) | (~1.308, —0.302)

Age 85+ ~0.722 ~0.268 0.198 ~0.670
(-1.557, -0.059) | (-0.622, 0.085) | (~0.650, 0.254) | (~1.341, -0.009)

Rural ~0.034 ~0.040 0.070 0.107
(-1.433, 1.316) | (-0.364, 0.244) | (-0.181, 0.318) | (~0.135, 0.353)

Table 6: Posterior summaries of covariate effect on mortality for each of the four fitted models. The
larger the covariate effect, the greater the impact on the probability of 30-day mortality. For each
covariate, the posterior means are displayed with the 95% central posterior intervals in parentheses
below. Higher parameter values indicate a greater probability of 30-day mortality.

average treatment effects are below 0. This suggests evidence under the modeling assumptions that
catheterization does indeed have a positive effect. The catheterization effect appears to be larger (a
more negative difference) for older patients, though the posterior intervals reveal a fair amount of
variability. The treatment effect stratified by gender, race or urbanicity does not differ substantially

from the overall average treatment effect.

Table 6 shows posterior summaries of the covariate effects, &, on mortality after controlling for
the effect of catheterization and threshold to receive treatment. All four models seem relatively
similar in their parameter summaries, which may be interpreted identically across models. Ac-
cording to the 95% posterior intervals, gender, race and urbanicity have little effect on mortality
beyond the effect explained by catheterization and the threshold parameter. Younger patients, not
surprisingly, tend to survive longer than older patients as indicated by the positive relationship
between the posterior parameter estimates and age. The posterior intervals for the components
of « are fairly wide, particularly for Models 1 and 2. The reason for the posterior variability in
Models 1 and 2 is related to the degeneracy that could occur during the iterative simulation. If
during an iteration no patient is inferred to have a particular threshold value, then the conditional

posterior distribution of the covariate effects, a, will be degenerate. Such a degeneracy is much less
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likely to occur in Models 3 and 4.

A deeper examination of the results of fitting Models 3 and 4 reveals that the inclusion of
covariates in the threshold model does not seem to add substantially in explaining the variability
of the thresholds. While age has a strong positive association with effect on a patient’s threshold
(older patients are inferred to have larger values of I';), and all the comorbid conditions except
uncomplicated diabetes are associated with larger thresholds, the reduction in variance due to these
additional covariates is small. In particular, from Model 3, a 95% central posterior interval for o,
the standard deviation of the I'; unconditional on covariates is (39.29, 50.28) with an estimated
posterior mean of 44.38. From Model 4, where ¢ is fit conditional on the covariates, the 95% central
posterior interval is (37.46, 49.67) with an estimated posterior mean of 42.96. This drop in o could

potentially be greater if more predictive covariates were available.

The large variability in the posterior distribution for the local average treatment effect, partic-
ularly in Models 1 and 2, can be explained by examining the posterior distribution of threshold
probabilities. This is summarized in Figures 3 and 4. For Model 1, the medians of the posterior
distributions for pr(I'; = 1) and pr(I'; = y7) are 0.111 and 0.400, respectively. This indicates that
an average treatment effect is computed based on an average of only 1 — 0.111 — 0.400 = 48.9%
of the data. Similarly, for Model 2, the posterior medians of pr(I'; = ~;) and pr(I'; = 73) are
0.279 and 0.556, respectively. Here, an average of only 16.6% of the data is used to calculate a
local average treatment effect. This loss in efficiency is, in essence, the cost for accounting for the
effects of confounding biases. It is also worth noting that the posterior distribution of threshold
parameters, I';, do not change smoothly, so the multinomial assumption on the I'; captures features
of the underlying continuous distribution of I'; that might not otherwise be apparent. By contrast,
Models 3 and 4 make a strong assumption about the functional relationship (i.e., log-linear) of T';

and survival probability.

3.5 Model comparison

To compare the models, we examine how well they each predict responses on a subset of the
sample. We refit each of our models leaving out a random “validation” sample of 200 observations,
the same 200 observations for each model. Each Gibbs sampler was run for a burn-in period of 3000
iterations, with starting values at the posterior means from the previous fits. For the next 1000
iterations, we calculated a measure of predictive fit; given the model parameters at an iteration, we

calculated for out-of-sample patient i, 2 = 1,...,200, the probability of 30-day mortality, ;. We
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then computed the average log-(predictive)-likelihood (ALPL) for these 200 cases,

200

ALPL = o > (yilogmi + (1 — i) log(1 — m3))
i-1

where y; is 1 if the patient died within 30 days, and 0 otherwise. Larger values of ALPL indicate

better prediction to the validation sample. A model that predicted with only 50% accuracy (random

guessing) would produce an ALPL of log 0.5 = —0.693.

Figure 5 shows the comparison of the posterior distributions of ALPL for each of the four models
via boxplots. The figure indicates that all four models predict better than random, and, on average,
Model 1 predicts the validation sample responses substantially better than the other three models.
The large posterior variability of the ALPL for Model 1 may be related to the degeneracies induced
by the model fit in which no patients are inferred to belong to a threshold group. A comparison of
the ALPL for Models 1 and 2 reveals that using seven threshold levels per patient captures greater
variability than only using three. The distribution of the ALPL for Models 3 and 4 demonstrate that
using a continuous threshold parameter is too restrictive an assumption compared to a multinomial
threshold with seven levels. It appears from the comparison of distributions for Models 3 and 4 that

using covariate information at the threshold level improves predictability, though not substantially.

We also fit the model using a GMM approach via the two-stage least squares analysis used in
MMN. From this analysis, the estimated overall treatment effect from our data is —0.1520, with an
approximate standard error of 0.115. This result is comparable with those of our models, though the
GMM standard error is slightly larger. We expect the results to be somewhat similar because the
large sample size guarantees that the GMM estimator is well-behaved. Because our framework uses
likelihood-based inference rather than moment method inference, the properties of our procedure

are more easily understood, especially in small to moderate sized samples.

3.6 Unconfounded treatment assignment

For comparative purposes, we fit a model for mortality that ignores differential distance as
an instrumental variable. This can be accomplished by fitting a logistic regression model using a
uniform prior distribution on the regression coefficients to obtain (potentially biased) inferences
about the effect of catheterization on mortality. We simulated average treatment effects from a
normal approximation to the posterior distribution of regression coefficients. This was carried out

by drawing individual samples from the normal distribution of coefficients, calculating the posterior
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probabilities of mortality for each patient conditional on undergoing and not undergoing catheter-
ization, simulating two Bernoulli random variables (catheterization, no catheterization) for each
patient, and then calculating the average difference across all patients. This process was performed
200 times to produce an approximate posterior distribution for the (biased) treatment effect. The
distribution is summarized in Figure 6. The posterior mean from this model is —0.2412. The distri-
bution is tightly centered at the mean, with a 95% central posterior interval of (—0.2697, —0.2121).
This wrongly suggests that undergoing a catheterization improves chances of 30-day survival with
complete certainty. Naturally, this naive analysis does not account for the possible confounding

biases.

4 Conclusions

The importance of using instrumental variables in non-randomized study designs can be seen
from the catheterization example. Using only covariate adjustment results in model inferences that
are incorrectly precise. Incorporating an instrumental variable into our model produces inferences
with appropriately large variability that accounts for the selection biases in the study design. The
increase in uncertainty in our particular model is a result of patients being classified into compliers

and non-compliers, treatment effects not being defined for the latter group.

As with any modeling framework, an important issue in the use of our methodology is that
the model assumptions apply to the data. This is especially important for assumptions such as
the monotonicity of treatment choice with the instrument, which cannot be verified empirically,
though has testable implications. The reason differential distance in our example can be argued
to satisfy monotonicity relies on the nature of the index AMI hospital admission. Because of the
emergent nature of an AMI, individuals who suffer an infarct are typically admitted to a nearby
hospital. Whether a patient is taken to a hospital equipped to perform a catheterization versus to
one that does not is, to a large degree, a function of the distances to different candidate hospitals.
By contrast, if a study were performed to assess the effect of the treatment on patient outcome
of early-stage breast cancer via breast-conserving surgery versus mastectomy (breast removal),
then differential distance to facilities equipped with radiation therapy facilities would not be an
appropriate instrument. In this case, it is not likely that a patient would choose breast-conserving
surgery if the differential distance to a hospital with radiation therapy facilities were smaller.
Because the successful treatment of breast cancer does not depend so crucially on the prompt

delivery of the patient to a hospital, the choice of the type of hospital is not as much a function
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of distances to various hospitals as it is of other factors. Factors such as choice of physician or
recommendations to undergo treatment at a particular facility, make monotonicity an untenable

relationship between differential distance and treatment choice.

The difficulty in using our framework is that greater flexibility in choice of models requires
more care in selecting appropriate models. The approach we have taken with our mortality model
involved examining several instrumental variable models and comparing predictive characteristics.
Alternative approaches would involve learning the shapes of the functional relationships through
flexible regression methods (e.g., non-parametric regression procedures) and then modeling the
instrument and threshold parameters as continuous variables after properly choosing a functional

form. This is area for future work on this topic.

The use of latent threshold parameters in our instrumental variable approach not only permits
the specification of commonly used assumptions into a conveniently parametrized model, but per-
mits a flexible choice of assumptions about the probability models and the data structure. With
the recent addition of computational techniques such as iterative simulation to perform inference,

fitting the models we propose or their extensions are straightforward.
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A Conditional distributions for MCMC sampling
Gibbs sampling for Models 1 and 2

Conditional posterior distribution of A, §, a

The conditional posterior distribution of the mortality effect parameters is proportional to a
product of a binomial likelihood involving terms that only appear in (9) and a normal prior distri-
bution. Generating parameter values from this distribution may be carried out through rejection
sampling, as described by Zeger and Karim (1991). Following their approach, the product of the

binomial likelihood and normal prior distribution is approximated by a normal distribution with
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the same mode and twice the variance. A single draw is obtained by simulation from the approx-
imating normal distribution, and this is accepted with a probability proportional to the ratio of
the actual posterior density to the approximating normal density; otherwise the draw is rejected.
This process is repeated until a draw is accepted. The resulting draw is a sample from the desired

conditional posterior distribution

Conditional posterior distribution of p

The conditional posterior distribution of multinomial probabilities for threshold groupings is
proportional to a product of a multinomial likelihood and a (conjugate) Dirichlet prior distribution.
The resulting product is therefore a Dirichlet density. A sample from a Dirichlet distribution may
be obtained, for example, by generating Gamma random variables with shape parameters equal to
the Dirichlet parameters, and then computing the ratio of each Gamma draw to the sum of all the

Gamma draws.

Conditional posterior distribution of I';

Conditional on the data and the remaining parameters, the posterior distribution of the I'; are
independent and may be drawn individually. The distribution of a single I'; is proportional to the

product of three terms,
f(Til).6,0,Y,D, X, Z,p)
x (QF(1-QI7) - ((AlZ 2 TP (A1Z < TI=PI) - (plfr - plix)
where
Qi = logit™ ' (W] (A + D;6) + ).

and where A[-] is 1 if the argument is true, and 0 otherwise. This product can be evaluated for
each of the K values of I'; and then standardized to sum to 1, where K = 7 for Model 1 and K = 3
for Model 2. Note that the product evaluates to 0 when Z; < I'; and D; = 1, or when Z; > T}
and D; = 0, so that sampling may be performed more efficiently by excluding threshold groupings
resulting in 0 probability.

Gibbs sampling for Models 3 and 4

Conditional posterior distribution of §, a

Analogous to Models 1 and 2, the conditional posterior distribution of J, & is proportional to a
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product of a binomial likelihood and a normal prior distribution. Values of § and « are simulated

via rejection sampling, as described above.

Conditional posterior distribution of y or 3

The conditional posterior density of y in Model 3 is proportional to the product of a normal
prior, centered at 0, and a normal likelihood where the I'; are the data, and o? is the variance
(treated as known). The resulting density is therefore normal, and values from this distribution

may be simulated without difficulty.

For Model 4, the conditional posterior density of § is proportional to the product of a multi-
variate normal prior, centered at 0, and a normal likelihood which is the regression of the I'; on

2

the covariates, u;, given the variance is 0°. The resulting density is multivariate normal, so that

values of § may be simulated using standard methods.

Conditional posterior distribution of 2

The conditional posterior density of o2 is the product of the prior of 1/0% and a scaled
reciprocal-x? likelihood (product of normal densities). The resulting density is therefore also a
scaled reciprocal-x? density with the appropriate degrees of freedom (n — 2 for Model 3, and n — 16
for Model 4, where n = 3667, the sample size). Drawing from the reciprocal-x? distribution can
be accomplished by drawing from the x? distribution with the same degrees of freedom, and then

taking the reciprocal of the result.

Conditional posterior distribution of I';

As in Models 1 and 2, the conditional posterior distribution of the I'; are independent, so
they may be drawn separately. The conditional posterior distribution of I'; in Models 3 and 4 is

proportional to the product of three terms,
p(Ty)
o (QiTa)" (1= Qu(T))' V) - ((A1Z: = TP (A1Zi < T P) - o(Tilps, 0%),  (19)

where
Qi(T's) = logit ™" (Di6p + L'idr + Diledpr + zjcr)

and o(-|ps,02) is a normal density with mean p; (u; = p in Model 3, and p; = u}3 in Model 4) and

variance o2.

Obtaining a direct draw from this density can be difficult. Instead, we apply the weighted
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bootstrap (Smith and Gelfand, 1992), which is closely related to the SIR algorithm (Rubin, 1988).
This can be applied as follows. The product of the second and third factors in (19) correspond to
an unnormalized truncated normal density. We simulate eight values at random from this trun-
cated normal density. Denote these eight values 71,...,7s. Now compute the eight unnormalized

importance weights
Qi(7)" (1 = Qi)+
for j =1,...,8, and normalize them to sum to 1. Now resample a single value from the eight with

the computed importance weights. This procedure results in a value that is approximately drawn

from the desired conditional posterior distribution.
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Figure 1: Empirical distribution of differential distances. Differential distance is defined as the
difference between the distance a patient would need to travel to the nearest hospital equipped to
perform a cardiac catheterization and the distance a patient would need to travel to the nearest hos-
pital not equipped to perform a cardiac catheterization. Positive differential distances correspond
to patients living closer to hospitals equipped to perform catheterizations. The lowest differential
distance is —68 miles, and the largest is 22.4 miles. The median differential distance is 0 miles.
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Figure 2: Posterior distribution of the local average treatment effects of catheterization on mortality
from our four instrumental variable models. The local average treatment effect is defined as the
average mortality when all patients undergo catheterization less the average mortality when all
patients do not undergo catheterization for patients who are inferred to potentially receive both
treatments. The solid vertical line corresponds to the posterior means.
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Figure 3: Posterior distribution for the probabilities of belonging to each latent threshold group in
Model 1. The high probability of belonging to the group with the largest thresholds suggest that a
substantial fraction of the patients in the sample would never undergo a catheterization given their
covariates.

30



0.6

<
o
>
=
E .
T ™ #
S o |
= e
. f
N J»
o | |

Threshold distances

Figure 4: Posterior distribution for the probabilities of belonging to each latent threshold group in
Model 2. The local average treatment effect is defined only for patients inferred to have a threshold
distance of 0, so that effectively less than 20% of the sample is used to estimate the treatment
effect.
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Figure 5: Posterior distributions for the average log-(predictive)-likelihood (ALPL) computed over
the 200 observations left out of the model fit. Larger values of ALPL indicate better predictions.
The plot demonstrates that, on average, Model 1 outpredicts the other three models.
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Figure 6: Posterior distribution of the average treatment effect of undergoing catheterization from
a logistic regression model. The average treatment effect is defined as the average mortality when
all patients undergo catheterization less the average mortality when all patients do not undergo
catheterization. The solid vertical line corresponds to the posterior mean of —0.2412.
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