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Abstract

Many games and sports, including races, involve outcomes in which competitors are
rank ordered. In some sports, competitors may play in multiple events over long periods
of time, and it is natural to assume that their abilities change over time. We propose
a Bayesian state-space framework for rank ordered logit models to rate competitor
abilities over time from the results of multi-competitor games. Our approach assumes
competitors’ performances follow independent extreme value distributions, with each
competitor’s ability evolving over time as a Gaussian random walk. The model accounts
for the possibility of ties, an occurrence that is not atypical in races in which some
of the competitors may not finish and therefore tie for last place. Inference can be
performed through Markov chain Monte Carlo (MCMC) simulation from the posterior
distribution. We also develop a filtering algorithm that is an approximation to the
full Bayesian computations. The approximate Bayesian filter can be used for updating
competitor abilities on an ongoing basis. We demonstrate our approach to measuring
abilities of 268 women from the results of women’s Alpine downhill skiing competitions
recorded over the period 2002-2013.
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1 Introduction

Measuring competitor strength in games and sports has been an area of great interest among

professional scouts, sports organizations, and fans. Over the past 20-30 years, most devel-

opment of statistical methods for assessing competitor strength has been in the context of

head-to-head competitions that rely on paired comparison methods. Modern treatment of

paired comparisons assume fundamentally that each competitor’s strength can be repre-

sented as a parameter in a probability model for the outcome of a head-to-head competition.

The most common models are the Bradley-Terry model (Bradley and Terry, 1952) and the

Thurstone-Mosteller model (Mosteller, 1951). Cattelan (2012) provides a thorough review

of the current state of paired comparison modeling. Many games and sports, including vari-

ous types of races (horse, automobile, human track and field), gymnastics, diving, and golf,

involve multiple teams or players competing against each other simultaneously. For such

competitions the outcome often of interest is the rank ordering of competitors. Models for

rank orderings have been an active area of statistical development, but have received far less

attention than modeling results of head-to-head competition. Specific to a sports context,

competitors’ abilities may be changing over time, and a compelling modeling framework for

multi-competitor sports should account for the time-varying nature of ability.

Parametric models for rank orderings have a long history. The common assumption

for these models is that each competitor i, i = 1, . . . , n in an n-player competition has a latent

performance Yi following a specified distribution F (y|θi) with unknown ability parameter θi.

The probability that player 1 is ranked first, player 2 is ranked second, and so on, can be
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expressed in terms of the Yi as

P(Y1 > Y2 > · · · > Yn | θ1, . . . , θn). (1)

Inferences about the θi from the results of multiple competitions can then be determined, for

example, through likelihood-based approaches involving factors in the form of Equation 1.

Early work on parametric models for rank orderings include Plackett (1975) who assume

extreme value (i.e., Gumbel) distributions for the Yi, Henery (1981), Bockenholt (1992),

and Bockenholt (1993) who assume the Yi are normally distributed, and Henery (1983) and

Stern (1990) who consider Gamma models for the Yi. The rank ordering models for the

normal and extreme value performance distributions are special cases of the Gamma model

(Stern, 1990), though evaluating the permutation probabilities numerically can be difficult for

arbitrary Gamma distribution parameters. The rank ordering model based on extreme value

distributions is sometimes called the Plackett-Luce model, as an extension of the multinomial

logit choice model of Luce (1959) to rank orderings. This model is also commonly called

the exploded logit model (Allison and Christakis, 1994), or the rank-ordered logit model

(Hausman and Ruud, 1987). Henceforth we will refer to these models as rank ordered logit

(ROL) models. Example applications of the ROL model in sports settings include horse-race

outcomes (Ali, 1998; Lo and Bacon-Shone, 1994) and NASCAR automobile races (Graves

et al., 2003; Guiver and Snelson, 2009).

More recently, interest has focused on models with time-varying parameters. Baker

and McHale (2015) assume a ROL model for golfers’ abilities and model the change in abili-

ties non-stochastically through barycentric rational interpolants (Taylor, 1945), a particular

type of smoother. Herbrich et al. (2007) introduced an approach assuming normal latent per-

formances with normally distributed innovations to the ability parameters, with the ability
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parameters estimated through the expectation propagation algorithm (Minka, 2001). Weng

and Lin (2011) introduced an approximation procedure based on Stein’s method to derive

simple updating computations in the context of paired comparison and ROL models. Caron

and Teh (2012) developed a Bayesian nonparametric representation of the ROL model, and

extend their representation through a Gamma process to account for changes over time.

The approach we develop here is to model multi-competitor game outcomes through a

ROL model, and assume competitor strengths evolve over time through a Gaussian random

walk. We consider a full Bayesian treatment of the model, and describe how to obtain

inferences for the model through Markov chain Monte Carlo (MCMC) simulation from the

posterior distribution. An advantage of MCMC simulation in our context is the ease in

addressing the occurrence of ties in the rank orderings, a challenge that has previously been

computationally problematic. In addition to the full Bayesian analysis of our model, we

describe an approximate Bayesian filtering approach that can be used in the context of a

large number of competitors or many time periods in which a full Bayesian analysis might be

too computationally intensive. The approximate Bayesian filter may also be used to update

competitors’ abilities as new game results accumulate over time without the need to perform

a re-analysis of the entire data set. This filtering approach shares many similarities to the

one developed in Glickman (1999) for paired comparisons.

The paper is organized as follows. Section 2 describes the probability model for rank

orderings along with the stochastic component for changes in competitor abilities. In this

section, we also describe the details of MCMC posterior simulation for competitor abilities.

In Section 3, we introduce an approximate Bayesian filter based on the model in the previous

section. Both the full Bayesian approach and the approximate Bayesian filter are then applied
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in Section 4 to a data set on the results of women’s Alpine downhill skiing events. The paper

concludes in Section 5 with a discussion of the work, along with extensions and limitations.

2 A stochastic model for rank orderings

Consider a population of n competitors who compete in multi-competitor games over T

discrete time periods. Assume that during time period t, t = 1, . . . , T , Kt games or contests

take place. Also assume that competitor i, i = 1, . . . , n, has an ability parameter θit, defined

formally below, that indicates the competitor’s strength during period t. Suppose contest

k = 1, . . . , Kt within period t consist of mkt competitors. Suppressing the dependence on k

and t, suppose competitors 1, 2, . . . ,mkt are involved in contest k during time period t, and

let Yi be a latent performance by competitor i = 1, . . . ,mkt. We assume,

Yi|θit ∼ Gumbel(θit) (2)

with cumulative distribution function of the extreme value/Gumbel distribution

F (y|θ) = exp
(
−e−(y−θ)

)
(3)

We further assume that the Yi within contest k are conditionally independent given the θit.

Suppose that the observed outcome of contest k is a rank ordering of the latent per-

formances Y1, . . . , Ymkt
. It is straightforward to show that, conditional on θt = (θ1t, . . . , θnt),

Lkt = P(Y1 > Y2 > · · · > Ymkt
|θt) =

mkt−1∏
i=1

exp(θit)∑mkt

ℓ=i exp(θℓt)
. (4)

The model defined in (2) and (4) is the ROL model. The probability of a particular

rank ordering can be understood as the product of multinomial choice probabilities over di-

minishing choice sets; the product of the probability the winner outperforms all competitors
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with the probability the second-place finisher outperforms all but the winner with the proba-

bility the third-place finisher outperforms all except the first and second-place finishers, and

so on. Thus the likelihood contribution Lkt for a single rank ordering of mkt competitors is

the product of mkt − 1 multinomial logit probability factors; the mkt-th factor in the tele-

scoping product of probabilities is 1 so that it is not necessary to include. The assumption

of independent extreme value performance distributions leads to multinomial logit choice

probabilities. For the ROL model, it is common to impose a linear constraint on the ability

parameters θt, such as
∑n

i=1 θit = 0, because the model in (4) is uniquely specified only up

to an additive constant.

To account for the possibility that competitors’ abilities are changing over time, we

assume a Gaussian random walk on θ. Together with the ROL model component, the overall

model is an instance of a dynamic generalized linear model (Ferreira and Gamerman, 2000;

West et al., 1985). Our approach assumes a stochastic process on the θt in which

θt+1 = θt + δt+1 (5)

where

δt+1 ∼ N(0, Υ). (6)

The innovation covariance matrix, Υ, can be constrained to ensure that the average of the

θt+1 across competitors is the same as the average of the θt. Such a constraint acknowledges

that the rank orderings provide no information on systematic shifts in the θt. This constraint

is accomplished by setting

Υ = τ 2
(
I − 1

n
11′
)
, (7)

where I is the n × n identity matrix, 1 is the n-vector with 1 as each element, and τ 2 is a
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scalar parameter. Thus the marginal variance of the i-th innovation term is n−1
n
τ 2, and the

correlation between the i-th and j-th innovation terms is −1
n−1

. Generating a normal vector

with the covariance matrix in (7) is identical to simulating values from independent N(0, τ 2)

distributions and then zero-centering the vector by subtracting the sample mean. For a

large population of competitors (i.e., with n large), the innovations have a slight negative

correlation.

The stochastic process on the θt can be extended in a variety of ways. For example,

an autoregressive process on the θt may be assumed such as

θt+1 = νθt + δt+1 (8)

where

δt+1 ∼ N(0, τ 2I) (9)

and ν is an autoregressive parameter. Such models have been used in the context of mea-

suring ability in sports including Glickman and Stern (1998), and Glickman (1999).

The model specification is completed by a prior distribution. A flexible choice of a

prior distribution component on the initial competitor strengths, θ1, is

θ1|σ2
1 ∼ N(0, σ2

1I). (10)

More generally, an arbitrary multivariate normal prior distribution for θ1 may be assumed

rather than one centered on 0 and with independent prior components. A prior distribution

for the two variance parameters τ 2 and σ2
1 may be assumed. Conjugate inverse-Gamma

distributions have been used in previous work for Gaussian state model parameters (West

et al., 1985).

7



Because the ROL likelihood is a special case of a multinomial logit likelihood, inference

for the ROL state-space model can use the same computational approaches as those of

dynamic multinomial logit models. Recent work on inference in multinomial logit state-space

models have appealed to MCMC simulation from the posterior distribution. Early MCMC

approaches for state-space models with non-normal responses relied on sampling time-specific

parameters conditional on the neighboring parameter values. Examples included Carlin

et al. (1992) and Gamerman and Migon (1993). Cargnoni et al. (1997) proposed an efficient

MCMC sampling scheme based on conditionally Gaussian dynamic models.

In many multi-competitor game settings, ties can occur. Sports that involve accrual

of discrete point values (e.g., strokes in golf) can result in competitors with identical totals

at the end of the competition. Certain types of races and sports settings where competitors

have a limited amount of time to achieve a goal may result in competitors who do not finish

or complete the desired task. These competitors would then tie for last place. The model

in (4) does not directly apply to games and sports in which ties occur.

Two strategies may be considered for adjusting the ROL model. The first approach

is to explicitly model the occurrence of ties. In the context of the latent performance model,

a tie occurs when latent performances are sufficiently close. For example, if competitors

1, . . . , d tie in a competition, then the model can require

max
a,b∈{1,2,...,d}

|Ya − Yb| < κ. (11)

Given κ and the ability parameters θ, the probability of a tie in (11) can be approximated

by Monte Carlo simulation, if not directly. Johnson et al. (2002) in the context of latent

Normal performance distributions assume a similar model for ties in which the probability
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that two competitors tie is a smoothly decreasing function of the difference between latent

performances.

A second strategy, and the approach we assume here, is that the model itself does

not recognize that ties exist, but when ties occur the likelihood is specified as a mixture over

all possible permutations of the collection of tied competitors. For example, if competitors

1, 2, 3, 4, 5 engage in a contest with competitor 1 winning, competitor 5 in last place, and

competitors 2, 3 and 4 tying for second place, then the likelihood would be an average over

six ROL probabilities corresponding to the following rankings: (1, 2, 3, 4, 5), (1, 2, 4, 3, 5),

(1, 3, 2, 4, 5), (1, 3, 4, 2, 5), (1, 4, 2, 3, 5), and (1, 4, 3, 2, 5), where the position of the value in

the 5-tuplet is the rank of that competitor. Recognizing the connection to partial likelihoods

for survival data, the mixture likelihood approach was proposed by Kalbfleisch and Prentice

(2011) and described in the ROL model context by Allison and Christakis (1994). Glickman

(1999) made a similar assumption in the context of paired comparison models with ties.

Allison and Christakis (1994) and Baker and McHale (2015) note that inference for

the mixture likelihood is computationally intractable when more than a few competitors are

involved in ties. Inference in a Bayesian setting, however, permits a straightforward Monte

Carlo estimate of the mixture likelihood. Rather than evaluate the mixture likelihood over

all possible permutations of competitors involved in ties, we take the approach of randomly

permuting the indices of competitors involved in ties at the start of each MCMC iteration,

and then condition on the permutation when simulating model parameters from their con-

ditional posterior distributions. This approach is identical to a common strategy in MCMC

simulation for general mixture models in which the mixture component label is treated as a

latent variable whose distribution is inferred through Monte Carlo integration (Carlin and
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Chib, 1995; Jasra et al., 2005). Upon convergence of MCMC, the simulated draws of the

ability and variance parameters are simulations from the mixture distribution.

3 Development of a multi-competitor rating system

Some games and sports settings require inferences about strength to be computed on an

ongoing basis for large numbers of competitors. For example, when tracking competitor

abilities over time for populations of athletes, or when constructing a rating system for

league play, the methods developed in Section 2 may be too computationally intensive to

be performed regularly. One common approximation in state-space models for updating the

state parameters is the use of particle filters (Doucet et al., 2000, 2001). An early application

of particle filters in a sports context involved updating NFL football team strengths (Glick-

man and Stern, 1998). While updating particles is usually a quick computation, a challenge

is that most of the posterior mass tends to concentrate on a small number of particles upon

successive filtering steps. An alternative approach that we develop here is based on approxi-

mating the posterior distribution of abilities by a normal distribution each time period data

are observed, and performing ability parameter updates through a Newton-Raphson algo-

rithm that determines the posterior mode and second derivative at the mode. The updated

means are approximated by the posterior mode, and the updated variances are obtained by

taking the negative of the inverse of the second derivative. Prior to applying the rating pro-

cedure we develop here, the variance parameters τ 2 and σ2
1 are treated as fixed and known.

These parameters may be set at summary estimates (e.g., posterior means) based on a full

Bayesian analysis as in Section 2. Alternatively, these parameters may be chosen through

optimization based on predictive fit criteria which we discuss below.
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The rating updating procedure we develop is intended to be applied recursively at the

start of each rating period. At the beginning of a new rating period, the prior distribution of

competitor strengths is assumed to consist of independent normal distribution components.

Game data are observed during the rating period, and then approximate normal posterior

distributions are computed for each competitor using the algorithm described below. Fi-

nally, to obtain the prior normal distribution for the next rating period, the addition of the

innovation variance τ 2 is applied to all competitor strength distributions. This sequence of

steps is applied recursively over successive rating periods.

Suppose prior to games in time period t, the ability distributions for competitors

i = 1, . . . , n are specified independently as

θit ∼ N(µit, σ
2
it). (12)

Assume Kt competitions occur during period t. We first consider the case in which no ties

occur. Suppressing the dependence on k and t, suppose competitors 1, 2, . . . ,mkt compete

in competition k in which player 1 places first, 2 places second, and so on. The likelihood

contribution for competition k for this rank order is given by Equation (4).

Again suppressing dependence on t, we now define two (mk−1)×n matrices essential

for the description of the computational algorithm. Let Xk be the (mk − 1) × n matrix in

which columns are indexed by every competitor in the population and the i-th row encodes

the choice set of competitors involved in i-th factor of Lkt in (4). More concretely, for

i = 1, . . . ,mk−1, (Xk)ij = 1 if competitor j is in the choice set (the indices of the competitors

with terms in the denominator) of the j-th multinomial logit probability factor of Lkt, and

0 if not.
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Let W k be the (mk−1)×n matrix in which columns are indexed by competitors, and

all the elements of the i-th row are 0 except for the element corresponding to the i-th place

finisher which is set to 1. Therefore (W k)ij = 1 if the numerator of the i-th multinomial

logit probability factor of Lkt involves competitor j, and 0 otherwise.

Letting µt = (µ1t, . . . , µnt) and σt = (σ1t, . . . , σnt), the log of the posterior distribution

up to an additive constant can be written as

log p(θt|X1, . . . ,XKt ,W 1, . . . ,WKt ,µt,σt)

= C∗ + log p(θt|µt,σt) +
Kt∑
k=1

logLkt

= C∗∗ −

(
n∑

i=1

(θit − µit)
2

2σ2
it

)
+

Kt∑
k=1

(W kθt − log(Xkηt))
′1mk−1 (13)

where C∗ and C∗∗ are functions of normalizing constants, ηt = exp(θt), and 1mk−1 is the

(mk − 1)-vector with every element set to 1.

We can determine an approximating normal posterior distribution of θt by numeri-

cally finding the mode of the log-posterior distribution in (13). The mode can then be used

as the approximate normal posterior mean. To obtain the posterior covariance matrix, we

evaluate the second derivative matrix of the (13) at the mode, and then find the negative

of the matrix inverse to approximate the posterior covariance of θt. This optimization can

be accomplished through the Newton-Raphson algorithm, though other numerical optimiza-

tion procedures are possible. The steps of the Newton-Raphson procedure to obtain the

approximate normal posterior distribution are outlined in Appendix A.

In practice, two modifications can be made to the above procedure that recognize the

computational difficulty of working with large populations of competitors. First, competitors
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who do not compete during period t only contribute to (13) through the prior distribution

term, and the approximating normal posterior distribution for such competitors is their

prior distribution. Therefore, rather than specifying Xk, W k, and θt in terms of the full

population of n competitors, it is sufficient to redefine these terms involving only competitors

who competed in period t. Second, rather than saving the full posterior covariance matrix

resulting from the computation, we set the posterior covariances to 0 which results in a

normal posterior distribution that is composed of independent competitor-specific normal

distributions. This thresholding to 0 may be justified by acknowledging that the covariances

generally are likely to be weak, and that retaining the covariances would involve replacing

the first term in the sum in (13) with computation requiring the inversion of large covariance

matrices.

As a result of the optimization of (13), we obtain approximate normal marginal

posterior distributions for each competitor of the form

θit|X1, . . . ,XKt ,W 1, . . . ,WKt ,µt,σt ∼ N(µ∗
it, σ

2∗
it ). (14)

For the rating procedure, we assume for each i and t

θi,t+1|θit, τ 2 ∼ N(θit, τ
2) (15)

Therefore, the distribution of θi,t+1 conditional only on the parameters associated with period

t is given

p(θi,t+1|µ∗
it, σ

2∗
it , τ

2) =

∫
N(θit|µ∗

it, σ
2∗
it )N(θi,t+1|θit, τ 2)dθit

= N(θi,t+1|µ∗
it, σ

2∗
it + τ 2) (16)

where N(·|µ, σ2) is a normal density with mean µ and variance σ2.
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When ties are present in rank orderings, the approach described in Section 2 in the

context of MCMC posterior simulation cannot easily be applied to the rating procedure. We

instead use an approximation due to Breslow and Crowley (1974). Their approach involves

each competitor involved in a (possibly multi-way) tie having a separate factor in the ROL

likelihood. Each factor is the multinomial logit probability that each competitor in a tie

outperforms all others involved in the tie as well as the other competitors that are ranked

lower. The similarity of the performances among tied competitors is therefore captured

through factors in the likelihood that have each competitor outperforming the others. As an

example, in a competition with six competitors in which player 1 is ranked first, players 2,

3 and 4 tie for second place, player 5 comes in fifth place, and player 6 comes in sixth place,

the likelihood contribution would be(
exp(θ1)∑6
i=1 exp(θi)

)(
exp(θ2)∑6
i=2 exp(θi)

)(
exp(θ3)∑6
i=2 exp(θi)

)(
exp(θ4)∑6
i=2 exp(θi)

)(
exp(θ5)∑6
i=5 exp(θi)

)
.

(17)

Note that all three middle factors in (17) have denominators that involve competitor pa-

rameters θ2, . . . , θ6. Baker and McHale (2015) adopt this approach to ties in their ranking

model, and demonstrate through simulations that the approximation results in inferences

that produce little difference from the mixture likelihood approach described in Section 2.

This approach to modeling ties can be incorporated in a straightforward manner

into our rating procedure. As long as competitors who tie are assigned the same rank,

the algorithm as described above implements the approximation by Breslow and Crowley

(1974). This is because the rows of Xk in (13) recognize that the choice set over which the

multinomial logit probabilities are specified include competitors with the same rank (i.e.,

that are tied). As before, the normal prior distribution of θt is updated to an approximate
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normal posterior distribution by optimizing (13).

As described, the rating procedure is a filtering algorithm. The algorithm determines

an approximate posterior distribution of competitor strength θt based on all competition

results prior to or during period t. The rating procedure can be adapted to smooth ear-

lier parameters based on later results, that is, provide inferences about θt based on all

competition results through the final time period. This can be accomplished through the

Rauch-Tung-Streibel (RTS) smoother (Rauch et al., 1965), a particular version of the Kalman

smoother. The computations involved with the RTS smoother assume posterior competitor

distributions of θit, for t = 1, . . . , T

θit|Y t ∼ N(µ∗
it, σ

2∗
it ) (18)

where Y t denotes all game results up through and including period t, and where µ∗
it and σ2∗

it

are the posterior parameters of the approximating normal distribution. The RTS smoother

is implemented recursively in the following manner. First, let

µ̃iT = µ∗
iT

σ̃2
iT = σ2∗

iT . (19)

Then, for t = T − 1, T − 2, . . . , 1, compute

µ̃it = µ∗
it +

(
σ2∗
it

σ2∗
it + τ 2

)
(µ̃i,t+1 − µ∗

it)

σ̃2
it = σ2∗

it +

(
σ2∗
it

σ2∗
it + τ 2

)2

(σ̃2
i,t+1 − σ2∗

it − τ 2). (20)

These computations result in the smoothed parameters of

θit|Y T ∼ N(µ̃it, σ̃
2
it) (21)
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Our approximate Bayesian approach treats τ 2 and σ2
1 as fixed in advance. Rather

than estimating τ 2 and σ2
1 through a full Bayesian analysis, estimation may be performed

by optimizing a predictive fit criterion. The approach we adopt here is to maximize a

weighted average of Spearman rank correlations (Spearman, 1904) between the (filtered)

posterior mean strengths and the rank order of competitors in an event during the next

time period, and average these values over a validation set of time periods. Specifically,

for candidate choices of τ 2 and σ2
1, we perform the approximate Bayesian filter to obtain

the approximate normal posterior for the θis ∼ N(µis, σ
2
is) at time period s < T . We then

compute the Spearman rank correlation between the µis and the rank order for event k

during time period s + 1 for each of the Ks+1 events to obtain predictive measures of fit

ρk,s+1 for k = 1, . . . , Ks+1. This process is repeated for each subsequent time period to

obtain predictive Spearman correlations. Thus, for each t = s, s+ 1, . . . , T − 1, we compute

the approximate posterior means µit from the filtering algorithm, and calculate the Spearman

correlation with the competitors’ ranks in each event in period t+ 1. The weighted average

of correlations over the validation periods t = s+ 1, . . . , T is then given by

ρW =

∑T
t=s+1

∑Kt

k=1(mkt − 1)ρk,t∑T
t=s+1

∑Kt

k=1(mkt − 1)
(22)

This approach to constructing weighted averages of Spearman rank correlations as an overall

correlation measure is described in Taylor (1987).

With the computation for ρW , the variance parameters can be optimized through

common optimization algorithms, such as the Nelder-Mead optimization algorithm (Nelder

and Mead, 1965). In our context, the Nelder-Mead algorithm optimizes τ 2 and σ1 to result

in the largest value of ρW given the data and the choice of the time period s at which the

predictive measure is computed. While the Spearman rank correlation takes on only finitely
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many values, we have found in our examples that this does not hinder the Nelder-Mead

algorithm which assumes a continuous objective function.

4 Application to women’s Alpine downhill skiing

We apply the methods developed in Sections 2 and 3 to the results of women’s competitive

Alpine downhill skiing over the period from February 12, 2002 to December 7, 2013. The data

set consists of the results of 103 elite women’s skiing events administered by the Fédération

Internationale de Ski (FIS), including the Olympic games, World championships, World

Cup, and a variety of regional events. A total of 268 women skiers competed in these events,

averaging 1.578 events per year. Many of the women competed infrequently; 51 of the women

competed in only one event, and 26 competed in only two events over the twelve year period.

However, two skiers competed in 90 or more of the 103 events. The data were provided to

us by the U.S. Olympic Committee.

Alpine downhill skiing competitions within the FIS are governed by the World Cup

scoring system for each event. Race completion times are converted to integer point scores.

We were not provided with actual race completion times. Depending on the event, each

competitor may have had multiple scored runs, and the total score for a competitor in an

event was the sum of the points earned for each run. The discretized point scoring therefore

frequently resulted in ties, typically for lower finish positions in events. In our competition

results data, a total of 4.4% of the final positions in events were ties. In addition to ties based

on equal total FIS points, many competitors in events did not receive any points. The scoring

system awards points on a given run to the top 30 finishers, so those who did not finish in
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the top 30 in any run did not receive any FIS points in the event. These competitors could

be treated as tying for last place in an event. A total of 8.7% of the standings in events were

ties based on not receiving points for the event. Thus a total of 13.1% of the final standings

in events were ties.

For our main analyses, we divided the 12-year period of results into 24 six-month

rating periods, with an average of 4.3 events per period. Two periods (July-December 2002

and January-June 2003) had no events recorded, while three of the periods consisted of as

many as seven competitions (January-June 2005, 2009 and 2010) which was the maximum in

a 6-month period. Using six month rating periods is a compromise between having periods

long enough over which skiers abilities are not changing appreciably, and short enough to

detect changes in ability.

We fit the model in Section 2 simulating from the posterior distribution of skiers’ abil-

ities via MCMC using the Bayesian software package JAGS (Plummer, 2003) called from

within the computing package R (R Foundation for Statistical Computing, 2012). Two par-

allel chains were run with dispersed starting values, each with a burn-in of 10000 iterations.

Each chain ran for an additional 20000 iterations, and posterior inferences were based on

these sets of simulated parameter draws. Convergence diagnostics (Cowles and Carlin, 1996)

indicated that the MCMC simulation had reached stationarity.

We also ran our approximate Bayesian filter to the same game outcome data as de-

scribed in Section 3. We used the final three rating periods, equal to 1.5 years of competitions,

to compute a predictive weighted average Spearman rank correlation within a Nelder-Mead

optimization algorithm. Assuming a different numbers of validation periods on which to
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Full Bayes Approximate Bayes

Posterior 95% Central
Parameter Mean Posterior Interval Optimized Value

τ 0.352 (0.310, 0.399) 0.295
σ1 0.451 (0.083, 0.668) 0.313

Table 1: Posterior inferences for τ , the innovation standard deviation, and σ1, the standard
deviation of skier abilities in 2002. First two columns are the results for the full Bayesian anal-
ysis, and the final column summarizes the optimized values from the approximate Bayesian
filter.

compute the correlation measure did not result in substantively different optimized variance

parameters.

Table 1 displays the resulting estimated standard deviation parameters from the full

Bayesian and the approximate Bayesian methods. The first two columns contain the MCMC-

estimated posterior means and 95% central posterior intervals for the standard deviation of

skiers’ initial abilities, σ1, and the innovation standard deviation, τ , as displayed in Equa-

tions (7) and (10). The third column displays the optimized values from the approximate

Bayesian filter. The standard deviation of initial abilities among elite women skiers indicates

an appreciable amount of variation, but it is imprecisely estimated from the data based on

the full Bayesian analysis. The innovation standard deviation is more precisely estimated

as indicated by the full Bayesian analysis, and it suggests the possibility of large shifts in

ability between 6-month periods. The optimization for the approximate Bayesian analysis

resulted in standard deviation estimates that were somewhat lower than the posterior means.

The optimized value of σ1 from the approximation algorithm was within the 95% central

posterior interval, but the optimized value of τ was lower than the 95% central posterior

interval.
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We label the 24 time periods for our analyses as (2002.1, 2002.2, 2003.1, . . . , 2013.2).

In Table 2 we summarize in the first two columns the posterior mean and standard deviations

for the top 20 women skiers ranked according to their MCMC-estimated posterior means

among the subset of 108 skiers who competed in events since January 2012. The third and

fourth columns of Table 2 summarize the posterior means and standard deviations from the

approximate Bayesian algorithm for the skiers in the first two columns. The distribution of

posterior means of the θi,2013.2 for this group ranged from −1.517 to 2.707 for the full Bayesian

analysis, and from −1.813 to 2.144 for the approximate Bayesian analysis. From Table 2,

most of the top twenty skiers have posterior means of the θi,2013.2 that are close. Accounting

for the posterior uncertainty of these values, the relative abilities between adjacent skiers are

nearly indistinguishable, though skiers who are further apart on the list have more clearly

distinguishable abilities. It is worth noting that two skiers not on the list (Hilde Gerg and

Michaela Dorfmeister) had posterior mean ability parameters of 3.264 and 2.229, respectively,

from the full Bayesian analysis, which were quite a bit higher than those on Table 2. Both of

these skiers had consistently impressive performances in their last set of competitions, but

Dorfmeister last competed in 2006 and Gerg in 2005.

The approximate posterior means in the third column are ordered similarly to the

MCMC-estimated means in the first column, suggesting a strong correspondence between the

rankings of top skiers from both analyses. The biggest exception occurs with Elena Fanchini

who is estimated to be four places lower on the list. The distribution of approximate posterior

means among the top 20 is shifted down by about 0.5–0.55 compared to the means in the

full Bayesian analysis. This constant difference does not affect the probability calculation

for rank orderings because the ROL probabilities are the same up to an additive constant
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Full Bayes Approximate Bayes

Posterior Posterior Posterior Posterior
Skier Mean Std Dev Mean Std Dev

Tina Maze 2.707 0.414 2.144 0.380
Marion Rolland 2.556 0.537 2.009 0.467
Anna Fenninger 2.386 0.477 1.749 0.435
Elena Fanchini 2.121 0.463 1.494 0.420
Julia Mancuso 2.072 0.355 1.623 0.313

Lara Gut 2.061 0.439 1.507 0.389
Elisabeth Görgl 2.053 0.414 1.520 0.374

Maria Höfl-Riesch 2.045 0.452 1.552 0.395
Lindsey Vonn 1.816 0.399 1.467 0.349

Johanna Schnarf 1.682 0.526 1.163 0.478
Marianne Kaufmann-Abderhalden 1.675 0.476 1.058 0.434

Viktoria Rebensburg 1.663 0.464 1.095 0.425
Regina Sterz 1.487 0.423 0.919 0.389
Stacey Cook 1.482 0.382 0.954 0.355

Dominique Gisin 1.433 0.441 0.888 0.403
Ilka Štuhec 1.343 0.441 0.753 0.407

Carolina Ruiz Castillo 1.296 0.396 0.763 0.407
Stefanie Moser 1.235 0.448 0.680 0.403
Fabienne Suter 1.223 0.375 0.750 0.338
Verena Stuffer 1.181 0.422 0.604 0.390

Table 2: Posterior mean and standard deviation of skier abilities in the second half of 2013,
for 20 skiers with highest means among 108 active skiers in 2012-2013 based on the full
Bayesian analysis and based on the approximate Bayesian approximation.
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on the scale of the strength parameters. The approximate posterior standard deviations in

the fourth column are estimated to be slightly smaller than the corresponding values in the

second column, but not by an amount that would result in conflicting conclusions.

Two high-profile skiers in our data set who have actively competed over most of the

12-year period are the American athletes Lindsey Vonn and Julia Mancuso. Figure 1 displays

the posterior mean strength of each skier along with 95% central posterior intervals around

the means for both the full Bayesian analysis and the smoothed approximate Bayesian rating

system analysis. In both cases, Mancuso and Vonn appear to have similar abilities up through

about 2008, at which point Vonn experienced substantially improved performances from 2009

to 2013. The strength summaries from the full Bayesian analysis (left figure) appear to span

a greater range compared to the approximate Bayesian analysis (right figure), as the peak

mean strength for Lindsey Vonn in 2011 reaches over 5.0 in the full Bayesian analysis, but

only 4.0 in the approximate Bayesian analysis. The overall trends of both skiers match

closely in the two approaches.

Let θV,t and θM,t be the ability parameters for Vonn and Mancuso, respectively, at

time t. Figure 2 displays the pointwise posterior means over time for exp(θV,t)/(exp(θV,t) +

exp(θM,t)), the probability Vonn would outperform Mancuso (i.e., obtain a higher place in an

event) at time t. The figure shows the posterior means computed both for the full Bayesian

analysis and the approximate Bayesian analysis. Despite the more compressed estimated

posterior means from the approximate Bayesian analysis, the posterior probabilities Vonn

outperformed Mancuso are close for both analyses as can be seen by the coinciding probability

trends. The probabilities differ by no more than 0.05 for all estimated probabilities with the

exception of the second 6-month period in 2007 in which the probability difference was 0.076.
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Figure 1: Pointwise means and 95% central posterior intervals of ability parameters over
time for Julia Mancuso and Lindsey Vonn. Left: Summaries based on full Bayesian analysis.
Right: Summaries based on approximate Bayesian analysis.

Consistent with Figure 1, Vonn would be expected to outperform Mancuso prior to 2007,

at which point Mancuso appeared to be somewhat better. Then from 2009 to 2013, the

probability Vonn would outperform Mancuso is close to 0.9. By 2013, the two skiers are

inferred to be of essentially similar strengths.

We assessed the predictability of the full Bayesian and approximate Bayesian ap-

proaches by predicting rank orders of seven events held between December 21, 2013 and

March 12, 2014. The seven events, which were not used in the previous model fitting, con-

sisted of 73 of the 268 women skiers. Six skiers in these seven events were not in the model
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Figure 2: Pointwise posterior probability by year Lindsey Vonn would outperform Julia
Mancuso based on full Bayesian analysis and approximate Bayesian rating analysis. The
horizontal dashed line is drawn at a probability of 0.5.

development sample of 268, so their results in the seven events were removed.

We computed the weighted average of Spearman correlations between the rank or-

derings of the µi,2013.2 and the final finish places across the seven events as our measure

of predictive accuracy, as described in Section 3. The weighted average of the Spearman

correlations are summarized in Table 3. In addition to the full Bayesian and approximate

Bayesian analyses based on dividing the original sample into 6-month periods, we performed

the full Bayesian and approximate Bayesian analyses dividing the sample into 3-month peri-

ods for one set of analyses and 12-month periods for another set. To ensure correspondence
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Weighted
Approach Spearman’s correlation

Full Bayes, 3-month rating periods 0.580
Full Bayes, 6-month rating periods 0.586
Full Bayes, 12-month rating periods 0.614

Approximate Bayes, 3-month rating periods 0.601
Approximate Bayes, 6-month rating periods 0.587
Approximate Bayes, 12-month rating periods 0.596

Table 3: Performance of six different updating procedures on predicting event results for 7
future events. Results are summarized by averaging Spearman rank correlations between
skiers’ standings and the rank order of the 2013 posterior mean strength weighted inversely
by the variance of the correlations.

with the analysis for 6-month periods, the variance parameters for the approximate Bayesian

analyses for 3-month and 12-month periods were optimized for 6 validation periods and 2

validation periods, respectively, corresponding to the final 1.5 years of game results and 2

years of game results. As seen in the table, the average rank correlations are comparable

with values ranging between 0.580 and 0.614. The most predictive method by this measure

is the full Bayesian analysis of 12-month periods, followed by the approximate Bayesian

analysis of 3-month periods. Because a conservative standard error estimate of a Spearman

rank correlation is 1/(m− 1), the value when the samples are uncorrelated and where m is

the number of objects involved in the ranking (Zar, 1972), an estimate of the standard error

of the weighted Spearman rank correlations is computed to be about 0.06. With a standard

error of this magnitude, none of the predictions in Table 3 substantially outperforms any of

the others.
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5 Discussion

The approaches described in this paper to infer competitor abilities in multi-competitor

games assume a flexible set of assumptions; competitor performances follow extreme value

distributions, and the mean performance varies stochastically over time through a Gaussian

random walk. Our full Bayesian approach applies standard computational machinery via

MCMC simulation from the posterior distribution to infer model parameters. By fitting

models through MCMC simulation, rank orderings with ties pose no difficulties. The ap-

proximate Bayesian filter we developed produces parameter estimates that do not always

match the full Bayesian approach, but in our applications the probabilities of rank orderings

are quite close.

One main difference between the full Bayesian analysis and the approximate Bayesian

filter is that the former retains covariance information between pairs of competitors over time.

The approximate Bayesian filter assumes after each time period that the covariances return

to 0. If a pair of competitors participate in multiple events with any regularity, a positive

covariance between the strength parameters will be induced. The positive covariance leads

to more precise inferences about the relative abilities of the pair of competitors. We found in

our analyses with Lindsey Vonn and Julia Mancuso, who both competed frequently and in

the same events, that the loss of covariance information in the approximate Bayesian filter

did not degrade the performance of the probability one outperforms the other relative to the

full Bayesian analysis. It may very well be that an application in which competitions occur

more frequently and that pairs of players compete more regularly would be needed for the

approximate Bayesian filter to evidence noticeably less reliable inferences.
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Our approach is specifically designed to model games and sports in which the outcome

is a rank ordering. It is worth noting that this approach can be easily modified to address

multi-competitor sports in which one competitor is singled out as a winner, and rank orders

are not relevant. Because the ROL likelihood in Equation (4) is a telescoping product

of multinomial logit probabilities of each competitor outperforming the rest, the setting

with a winner and no other players ranked is simply the first multinomial logit probability

factor of the ROL likelihood. Thus the methods in this paper apply to this revised setting.

Furthermore, more arcane game variants in which multiple players tie for first place by

design (e.g., games in which several competitors survive or exceed a threshold criterion and

therefore tie for first place) can equally be addressed within our framework.

One consideration in applying the full Bayesian approach versus the approximate

Bayesian filter is the trade-off between speed and accuracy. Our experience was that running

the full Bayesian analysis on a Windows PC laptop (Intel Core i7 CPU Q 720 @ 1.6 GHz,

6.0GB RAM) took two days to complete, whereas optimizing the approximate Bayesian filter

and then performing the filter and smoother on optimized variance parameters took less than

1 minute. Thus the approximate Bayesian approach results in enormous savings in time. Our

analyses suggest that the correspondence in estimated ability parameters between the full and

approximate Bayesian approaches is strong, and the outperformance probabilities between

pairs of competitors calculated using the two different approaches differ by amounts that are

negligible for practical purposes. If a goal of the analysis is to update competitor abilities on

an ongoing basis as new game outcome data are collected, the difference in computational

speed between the full and approximate Bayesian approaches justifies the use of the filtering

approach despite the small level of inaccuracy.
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In many multi-competitor sports settings, actual performance measures are recorded

which provide greater detail than merely the rank ordering. For example, in human, auto-

mobile, and horse races, race completion times are often available. In these situations, it

is usually preferable to model the actual performance measures as the additional detail can

result in more accurate descriptions of competitor strength. However if such information

is not available or unreliably recorded, or if a more robust approach that does not rely on

precise model formulations for performance measures is desired, then methods that assume

only rank orderings for game outcomes are appropriate. Similarly, if a goal is ultimately to

make predictions for rank orderings in games and sports, then our framework is a potentially

useful approach and worthy of consideration.
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A Newton-Raphson algorithm for optimizing log-posterior

We outline the steps for implementing the Newton-Raphson algorithm to find the posterior

mode of θt in Equation (13). Let the first and second derivatives of Equation (13) as functions
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of θt be

D1(θt) = (D1.1(θt), . . . , D1.n(θt))

D2(θt) =

 D2.11(θt) · · · D2.1n(θt)
...

. . .
...

D2.n1(θt) · · · D2.nn(θt).


For event k at time t, let

pik(θt) =
exp(θit)

∑mk−1
ℓ=1 (Xk)ℓi

(Xkηt)
′1mk−1

where ηt = exp(θt). Then

D1.i(θt) = −
(
θit − µit

σ2
it

)
+

Kt∑
k=1

mk∑
ℓ=1

(W k)ℓi −
Kt∑
k=1

pik(θt) (23)

D2.ii(θt) =
−1

σ2
it

−
Kt∑
k=1

pik(θt)(1− pik(θt)) (24)

D2.ih(θt) =
Kt∑
k=1

pik(θt)phk(θt) (25)

The Newton-Raphson algorithm proceeds in the following manner.

1. Select starting vector of posterior means, µ∗0
t = (µ∗0

1t , . . . , µ
∗0
nt). We have found that a

good choice is to perform the following sequence of calculations.

(a) Calculate π∗0
it =

∑Kt
k=1(

∑mk−1

ℓ=1 (Xk)ℓi)∑Kt
k=1(mk−1)

, the proportion of the times competitor i is

outperformed by his/her opponents during period t. Note that 1−π∗0
it is therefore

the proportion of times competitor i outperforms his/her opponents.

(b) Let F be the cumulative distribution function (cdf) for a standard logistic dis-

tribution, and F−1 the inverse cdf. Let q∗0it = F−1(0.01 + 0.98(1 − π∗0
it )) be the

quantile of the standard logistic distribution evaluated at the outperformance
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probability scaled to stay between 0.01 and 0.99. The scaling ensures that the

quantiles are not infinite if the player always outperforms his/her opponents.

(c) Let µ∗0
it =

q∗0it +µit/σ
2
it

1+1/σ2
it

, a weighted average of q∗0it with the prior mean µit.

2. At iteration j, j = 1, 2, . . ., let

µ∗j
t = µ∗j−1

t −D−1
2 (µ∗j−1

t )D1(µ
∗j−1
t ). (26)

The iteration is repeated until µ∗j
t changes by a negligible amount. The final estimated

posterior means and standard deviations at iteration J are given by

µ∗
t = µ∗J

t (27)

σ∗
t =

√
−diag(D−1

2 (µ∗J
t )). (28)
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