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Abstract

Objectives: Procedures for controlling the false positive rate when performing many hypothesis tests are commonplace in health and
medical studies. Such procedures, most notably the Bonferroni adjustment, suffer from the problem that error rate control cannot be local-
ized to individual tests, and that these procedures do not distinguish between exploratory and/or data-driven testing vs. hypothesis-driven
testing. Instead, procedures derived from limiting false discovery rates may be a more appealing method to control error rates in multiple
tests.

Study Design and Setting: Controlling the false positive rate can lead to philosophical inconsistencies that can negatively impact the
practice of reporting statistically significant findings. We demonstrate that the false discovery rate approach can overcome these inconsis-
tencies and illustrate its benefit through an application to two recent health studies.

Results: The false discovery rate approach is more powerful than methods like the Bonferroni procedure that control false positive
rates. Controlling the false discovery rate in a study that arguably consisted of scientifically driven hypotheses found nearly as many sig-
nificant results as without any adjustment, whereas the Bonferroni procedure found no significant results.

Conclusion: Although still unfamiliar to many health researchers, the use of false discovery rate control in the context of multiple
testing can provide a solid basis for drawing conclusions about statistical significance. © 2014 Elsevier Inc. All rights reserved.
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1. Introduction made, with plenty of advocates on each side of the argu-
ment. It appears doubtful that researchers will coalesce
behind a unified point of view any time soon.
Significance level adjustments that control study-wide
error rates are still common in peer-reviewed health studies.
An examination of recent issues of several highly cited
medical and health journals (Journal of the American Med-
ical Association, New England Journal of Medicine, Annals
of Internal Medicine, and Medical Care) reveals an abun-
dant use of multiple-test adjustments that control study-
wide error rates: We found 191 articles published in 2012
to 2013 making some adjustment for multiple testing, with
102 (53.4%) performing the Bonferroni or another study-
wide error adjustment. Some other studies reported explic-
itly, and almost apologetically, that they had not performed
an adjustment, and some even reported consequences of not
having adjusted for multiple tests.
—_— Despite the continued popularity of multiple test adjust-
Conflict of interest: None. . . ..
Funding: None. ments in health studies that control false positive error
* Corresponding author. Tel.: 781-687-2875; fax: 781-687-3106. rates, we argue that controlling the false discovery rate
E-mail address: mg@bu.edu (M.E. Glickman). [1] is an attractive alternative. The false discovery rate

We are now in an age of scientific inquiry where health
and medical studies are routinely collecting large amounts
of data. These studies typically involve the researcher at-
tempting to draw many inferential conclusions through
numerous hypothesis tests. Researchers are typically
advised to perform some type of significance-level adjust-
ment to account for the increased probability of reporting
false positive results through multiple tests. Such adjust-
ments are designed to control study-wide error rates and
lower the probability of falsely rejecting true null hypothe-
ses. The most commonly understood downside of these
procedures is the loss of power to detect real effects. Argu-
ments have been put forth over the years whether adjust-
ments for controlling study-wide error rates should be
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What is new?

e Controlling the false positive rate to address multi-
plicity of tests in health studies can result in logical
inconsistencies and opportunities for abuse.

e Errors in hypothesis test conclusions depend on the
frequency of the truth of null hypotheses being
tested.

e False discovery rate control procedures do not suf-
fer from the philosophical challenges evident with
Bonferroni-type procedures.

e Health researchers may benefit from relying on
false discovery rate control in studies with multiple
tests.

is the expected fraction of tests declared statistically signif-
icant in which the null hypothesis is actually true. The false
discovery rate can be contrasted with the false positive rate,
which is the expected fraction of tests with true null
hypotheses that are mistakenly declared statistically
significant. In other words, the false positive rate is the
probability of rejecting a null hypothesis given that it is
true, while the false discovery rate is the probability that
a null hypothesis is true given that the null hypothesis has
been rejected.

Table 1 illustrates the distinction between the false pos-
itive and false discovery rates. Suppose that a set of tests
can be cross-classified into a 2 x 2 table according to truth
of the hypotheses (whether the null hypothesis is true or
not), and the decision made based on the data (whether to
reject the null hypothesis or not). Let a be the fraction of
tests with true null hypotheses that are not rejected, b be
the fraction of tests with true null hypotheses that are
mistakenly rejected, ¢ be the fraction of tests with false null
hypotheses that are mistakenly not rejected, and d be the
fraction of tests with false null hypotheses that are rejected.
Assuming these fractions can be viewed as long-run rates,
the false positive rate is computed as b/(a + b), whereas
the false discovery rate is computed as b/(b + d). Although
the numerators of these fractions are the same, the denom-
inator of the false positive rate is the rate of encountering
true null hypotheses, and the denominator of the false dis-
covery rate is the overall rate of rejecting null hypotheses.

Conventional hypothesis testing, along with procedures
to control study-wide error rates, are set up to limit false
positive rates, but not false discovery rates. False discovery
rate control has become increasingly standard practice in
genomic studies and the analysis of micro-array data where
an abundance of testing occurs. Several recent examples of
false discovery rate control in health applications include
provider profiling [2] and clinical adverse event rates [3],
but false discovery rate control has yet to make serious

in-roads into more general health studies. Of the 191 arti-
cles we found in highly cited journals that mention adjust-
ments for multiple tests, only 14 (7.3%) include false
discovery rate adjustments.

This article is intended to remind readers of the funda-
mental challenges of multiple-test adjustment procedures
that control study-wide error rates and explain why false
discovery rate control may be an appealing alternative for
drawing statistical inferences in health studies. In doing
so, we distinguish between tests that are exploratory and
those that are hypothesis driven. The explanations we pre-
sent to discourage use of adjustments based on study-wide
error rate control are not new—the case has been made
strongly over the past 10 to 20 years [4—9]. Arguments
in favor of using false discovery rate control have been
made based on power considerations [10—13], but we are
unaware of explanations based on the distinction between
exploratory and hypothesis-driven testing.

2. Adjustment for multiple testing through false posi-
tive rate control

The usual argument to convince researchers that adjust-
ments are necessary when multiple tests are performed is to
point out that, without adjustments, the probability of at least
one null hypothesis being rejected is larger than acceptable
levels. Suppose, for example, that a researcher performs 100
tests at the a = 0.05 significance level in which the null
hypothesis is true in every case. If all the tests are indepen-
dent, then the probability that at least one test would be incor-
rectly rejected is 1 — (1 — 0.05)'® = 0.9941, or 99.41%. In
most studies, tests are not independent (eg, when tests share
the same data), in which case, the probability of at least one
incorrect rejection would not be quite so large, though likely
large enough to be of some concern. Recognizing that the
probability of at least one false positive may be unacceptably
large, a common strategy is to adjust the significance level as a
function of the number of tests performed.

One of the simplest and most commonly used ap-
proaches to adjusting significance levels is the Bonferroni
procedure [14,15]. Letting n be the number of tests per-
formed, and o the significance level one would normally
use if performing only one test, the Bonferroni procedure
involves rejecting null hypotheses whose P-values are less
than o/n rather than o.. For example, if a study involves 100
hypothesis tests and the researcher would ordinarily use
a = 0.05 as the significance level for a single test, then
the Bonferroni procedure requires the researcher to
compare each of the 100 P-values to a/n = 0.05/
100 = 0.0005. By invoking this procedure, the researcher
is guaranteed that the probability of at least one false pos-
itive, regardless of the dependence among the tests, is no
more than 0.05. Lowering the significance level in this
manner requires the oft-acknowledged trade-off that the po-
wer to detect actual effects has been compromised, despite
capping the probability of at least one false positive.
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Table 1. Cross-classification of tests into the fraction with null hypotheses that are true vs. false, and those whose null hypotheses are rejected vs.

not rejected

Decision

Do not reject null hypothesis

Reject null hypothesis

Truth Null hypothesis true
Null hypothesis false

b a+ b
d c+d
b+ d

The variables a, b, ¢, and d are the fractions of tests within each of the four cross-classified categories. The false positive rate is b/(a + b), and

the false discovery rate is b/(b + d).

Although using procedures like the Bonferroni adjust-
ment may seem statistically justifiable, two philosophical
problems exist. The first is that procedures like the Bonfer-
roni adjustment are actually simultaneous tests of a
composite or a ‘“‘universal” null hypothesis against an
omnibus alternative hypothesis [5,8,16]. Rejecting the null
hypothesis in favor of the alternative is merely a statement
that at least one of the components that make up the com-
posite null hypothesis is rejected, but without being able to
specify which one. Controlling the probability that at least
one component is rejected is usually too restrictive and
rarely of interest to the researcher. As an example, suppose
a researcher is interested in whether a health education pro-
gram to reduce stress among participants of a randomized
controlled study is effective, and separately tests the
program’s effectiveness within 20 different socio-
demographic subgroups at the o = 0.05 significance level.
The Bonferroni procedure involves comparing the P-value
for each of the 20 tests to 0.05/20 = 0.0025. If any of
the P-values is less than 0.0025, the conclusion of the Bon-
ferroni procedure is that the composite null hypothesis, that
the health education program is not effective for all the sub-
groups, is rejected. Arguably, a researcher is more inter-
ested in learning the significance of individual component
hypotheses (ie, which subgroups evidence effectiveness).
The Bonferroni procedure is often misapplied by singling
out individual tests that are significant according to the
above criterion. The procedure was developed as a solution
to a problem in simultaneous inference and was not con-
structed for application to single tests [6,17—19].

A second more subtle problem is that the probability of a
false positive result cannot be localized to specific tests. In
other words, one can arbitrarily choose the tests over which
a significance level adjustment is applied, and this arbitrary
choice can lead to inconsistent conclusions [5].

As an illustration of the second problem, suppose that
two researchers independently analyze the same data set.
The first researcher performs 20 hypothesis tests, all result-
ing in P-values of 0.001. Using a Bonferroni procedure and
assuming a single-test significance level of a = 0.05, the
adjusted significance level for each of the 20 tests is 0.05/
20 = 0.0025. The researcher would therefore conclude
that all the tests are significant. Meanwhile, the second
researcher performs the same 20 hypothesis tests and an
additional 80 that also result in P-values of 0.001. For the

combined 100 tests, the second researcher applies the Bon-
ferroni adjustment and uses a significance level of 0.05/
100 = 0.0005 for each of the 100 tests. For this researcher,
none of the tests are significant. The curious conclusion is
that although both researchers performed 20 of the same
tests, the second researcher could not conclude significance
on any of them simply by performing additional tests.

A more common type of example occurs when a
researcher chooses to divide a collection of tests into small-
er groupings. Suppose a researcher performs 100 tests and
obtains P-values of 0.001 for every test. As described pre-
viously, the Bonferroni-adjusted significance level is
0.0005, and none of the tests would be declared significant.
But if the researcher decided to partition the 100 tests into
five sets of 20 each, with the intention, for instance, of pub-
lishing each set of 20 in its own manuscript, then the
researcher might perform the Bonferroni adjustment based
on 20 tests on five separate occasions. In this latter situa-
tion, the Bonferroni-adjusted significance level in each of
the five sets of 20 tests would be 0.0025, and every
test would therefore be declared significant because
0.001 < 0.0025. Again, the inferential conclusions depend
solely on whether and how the tests are divided into groups.

We are aware of two serious attempts at justifying the
use of Bonferroni-type multiple-test adjustments recog-
nizing the previously mentioned difficulties. First, some re-
searchers suggest asserting a maximum study-wise or
family-wise error rate (FWER) that accounts for the largest
number of tests one could conceivably perform in a study
[20—22]. Despite specifying an FWER up front, a
researcher with a penchant for data analysis may still
perform more tests than the pre-specified FWER accounted
for, rendering the purpose of the FWER adjustment moot.
A second approach divides tests into those that are planned,
and those that are unplanned (ie, post-hoc tests). When
considering a multiple-test adjustment, a common recom-
mendation is to apply the adjustment to unplanned tests,
but use unadjusted significance levels for planned tests
[5,23,24]. The problem with this strategy relates to the
inability to localize the false positive rate: One researcher
may perform 20 tests of which 10 are unplanned, whereas
another researcher may perform the same 20 tests with all
of them planned (and therefore performs no significance
level adjustment). Once again, despite performing the same
tests, the inferential conclusions may differ.
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3. Toward an alternative criterion for assessing
significance

To appreciate the basis for the difficulties associated
with Bonferroni-type adjustments, we first remind the
reader of the process by which null hypotheses are rejected.
With conventional hypothesis testing:

1. A significance level (eg, o = 0.05) is asserted.

2. A P-value is computed from the data.

3. If the P-value is less than the significance level, the
result is declared statistically significant, and the null
hypothesis is rejected.

4. The researcher then concludes that the null hypothe-
sis is a false statement (or can be treated as such).

The researcher might therefore expect that the
hypothesis-testing procedure provides some assurance that
only a small fraction of rejected tests correspond to true
null hypotheses. However, this is not necessarily the case.

The reason that a small false positive rate (eg, 0.05) does
not translate to a small probability of true null hypotheses
among rejected results (the false discovery rate) is that
the latter probability depends on the frequency of tests in
which the null hypotheses are true. In the most extreme
case, if a researcher tests only true null hypotheses, 5%
of which on average will be declared significant at the
a = 0.05 level, then all of the null hypotheses among the
significant results will be true. In a less extreme but more
realistic setting, genomic researchers who perform multi-
tudes of tests for the significance of single-nucleotide poly-
morphisms on, say, phenotypic outcomes are in a situation
where an enormous fraction of the tests involve true (or
difficult to disprove) null hypotheses. By simply comparing
P-values to a 0.05 significance level in this situation, most
of the tests declared significant will involve true null hy-
potheses. On the other hand, if a researcher is performing
many tests that are expected to involve mostly false null hy-
potheses, then the frequency of false null hypotheses
among the tests declared significant will be high.

A common set of situations in which one might expect
differences in the rates of true null hypotheses are tests that
are hypothesis driven vs. tests that are exploratory or data
driven. Hypothesis-driven testing, arguably the gold stan-
dard for scientific research, presumes that prior knowledge
and scientific background to a problem motivates the tests
to be performed. The researcher expects that null hypothe-
ses are usually false in hypothesis-driven tests. Exploratory
testing, which is common in data mining scenarios where
the researcher is “hunting” for significant results, is not
ordinarily motivated by scientific knowledge of a problem.
For such tests, one can expect null hypotheses to be
frequently true.

The impact of testing null hypotheses with different
truth frequencies can be determined as a simple application
of Bayes rule. Consider two researchers, each of whom re-
jects true null hypotheses at a 0.05 significance level, and

who reject false null hypotheses at a 0.80 probability (ie,
the power to detect the alternative hypothesis is 80%).
Suppose the first researcher is primarily data driven, and
performs tests in which the null hypothesis is true 99% of
the time. Suppose that the second researcher is primarily
hypothesis driven, and performs tests in which the null
hypothesis is true only 1% of the time. For the first
researcher, among results declared statistically significant
at the 0.05 level, the probability the alternative hypothesis
is true is given by Bayes rule as 0.01 x 0.8/
(0.01 x 0.8 4+ 0.99 x 0.05) = 0.139, or about 14%. For
the second researcher, the analogous computation yields
099 x 0.8/(0.99 x 0.8 + 0.01 x 0.05) = 0.999, or
99.9%. Thus, for the researcher who performs tests mostly
with true null hypotheses, statistically significant results
are very likely to be errors. Meanwhile, the researcher
who performs tests with mostly true alternative hypotheses
is nearly guaranteed to be correct when declaring statistical
significance.

Ideally, if some assurance were desired that statistically
significant results corresponded to true alternative hypo-
theses, one would want to know the a priori probability
of the null hypotheses being true before setting a signifi-
cance level cutoff. In settings with exploratory or data-
driven hypotheses, the significance level cutoff would
need to be small to maintain a low frequency of true null
hypotheses among significant results. In settings with
hypothesis-driven tests, the significance level cutoff should
be higher. Procedures based on controlling the false posi-
tive rate (eg, the Bonferroni procedure) do not recognize
this principle.

4. Inferring the probability of a true null hypothesis

When performing a single hypothesis test, it is nearly
impossible to infer anything meaningful about the probabil-
ity the null hypothesis is true. However, when performing
multiple tests in a study, the distribution of P-values
provides information relevant to inferring the frequency
of true null hypotheses. This is because the distribution of
P-values is a mixture of two components: The distribution
of P-values for true null hypotheses, which by construction
is uniformly distributed between 0 and 1, and the distribu-
tion of P-values for false null hypotheses, which is right
skewed [25].

To see the distinction, consider the distribution of
P-values from two different studies. We do not know the
truth of the hypotheses being tested in either study, but
based on the distribution of P-values we can make infer-
ences about the truth. The first study involves the 28
P-values from Table 6 of Marx et al. [26] which summarize
the effects of predictors in four multiple regressions
on neuropsychological performance measures, and the
second study involves 55 P-values from Table 1 of Bombar-
dier et al. [27] that summarize differences in patient
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Fig. 1. Distribution of P-values for two studies. Top: Distribution of 28
P-values from Table 6 of Marx et al. [26]. Bottom: Distribution of 55
P-values from Table 1 of Bombardier et al. [27].

characteristics across two mental health conditions. Fig. 1
displays the distribution of P-values for each study. In the
first study (represented by the top histogram), the distribu-
tion of P-values is roughly uniform, which is consistent
with the null hypothesis being true for every test. Specif-
ically, the P-values that are less than 0.05 in the presence
of the remaining P-values are what would be expected if
all the null hypotheses were true. In such a situation, the
tests producing small P-values, including P-values below
a significance level of 0.05, intuitively should not be
declared significant because they are consistent with a uni-
form distribution of P-values. This study would be a likely
candidate for setting a very low significance level cutoff for
declaring significant results because we should not believe
that the small P-values are indicative of false null
hypotheses.

The second study, whose P-values are represented in the
bottom histogram of Fig. 1, has a greater proportion of very
small P-values than would be consistent with a uniform dis-
tribution. This lends support to the notion that many of the
small P-values are instances of false null hypotheses. For
this study, a very low significance level cutoff would inap-
propriately discount the small P-values, which intuitively
indicate true positive results.

The problem, therefore, is to have a method to determine
an appropriate significance level cutoff for P-values which
recognizes that some studies tend to involve data-driven or

exploratory null hypotheses that are generally true, and that
some studies tend to involve scientifically driven hypothe-
ses in which the null hypotheses are generally false. The
method, by itself, should not be simply a function of the
number of tests performed, as is the case with the Bonfer-
roni procedure.

5. False discovery rate control

One way to implement such a process is by controlling
the false discovery rate [1]. Many health researchers are un-
aware of the false discovery rate, although it is a natural
concept, and one that has important utility for calibrating
error rates in hypothesis tests. Among tests that are
declared significant in a study, the false discovery rate is
the expected fraction of those tests in which the null hy-
pothesis is true. The main goal of false discovery rate con-
trol is to set significance levels for a collection of tests in
such a way that among tests declared significant; the pro-
portion of true null hypotheses is lower than a specified
threshold. For example, if a false discovery rate procedure
is applied to a set of 100 tests, and 20 are declared signif-
icant by the procedure, then the expected fraction of the 20
significant results that have true null hypotheses is lower
than some pre-determined threshold (often chosen to be
0.05).

The reason false discovery rate control is an attractive
alternative to false positive rate adjustments is that it
explicitly controls the error rate of test conclusions among
significant results. If, for example, a collection of published
study results reported statistical significance at a false dis-
covery rate of 10%, then the reader would have some assur-
ance that at most 10% of the significant findings were
mistakenly concluded to be true positives. Results that are
significant at the 10% significance level do not have this
property and suffer from the interpretive difficulties
described earlier.

The original false discovery rate control method devel-
oped in the landmark article by Benjamini and Hochberg,
henceforth BH, is still useful and appropriate for many ap-
plications. If a researcher wants to enforce false discovery
rate control for a study with n tests with maximum false
discovery rate d (often 0.05, but this is not to be viewed
as a default choice), then the procedure is carried out as
follows:

1. Sort the n P-values in ascending order; label these p;,

P25 .-+ Pn.

2. Let k denote the largest index i for which p; < d X i/n,
for all i.

3. Declare all tests with P-values p;, ps, ..., Pk
significant.

The derivation and rationale for this method is described
elsewhere [1,2,28]. Notice that if d = 0.05, the rejection
criterion in Step 3 ensures that most of the P-values must



M.E. Glickman et al. / Journal of Clinical Epidemiology 67 (2014) 850—857 855

Table 2. Worked-out example of the Benjamini—Hochberg procedure

Sorted P-values 0.0001 0.0002 0.01 0.013
dx iln 0.005 0.01 0.015 0.02
Is P<dx iln? Yes Yes Yes Yes

0.03 0.04 0.07 0.15 0.26 0.52
0.025 0.03 0.035 0.04 0.045 0.05
No No No No No No

The upper row of the table is ten P-values in ascending order, and the bottom row is the comparison values in the procedure to determine which

P-values to declare significant.

be quite a bit less than 0.05 for a test to be declared signif-
icant because each p; is being compared with a fraction of
0.05 (ie, k/n of 0.05 where k = 1, 2, ..., n). In this sense, the
BH procedure is much more conservative than simply re-
jecting tests by comparing P-values to a nominal level such
as 0.05, but more powerful than the Bonferroni procedure
which would compare all P-values to 0.05/n. By compari-
son to the Bonferroni approach, the BH procedure com-
pares only the smallest P-value to 0.05/n.

Although the BH procedure is implemented in many
computer statistics packages, including SAS and R, the cal-
culations are straightforward to illustrate manually. Sup-
pose a researcher performs n = 10 hypothesis tests in a
study resulting in the P-values 0.52, 0.07, 0.013, 0.0001,
0.26, 0.04, 0.01, 0.15, 0.03, and 0.0002. Furthermore, sup-
pose that the researcher wants to implement the BH proce-
dure with a maximum false discovery rate of d = 0.05. The
first step is to sort the P-values in ascending order; these
appear on the top row of Table 2. The second step is to list
the values of d X i/n, fori = 1,...,10. With d = 0.05 and
n = 10, these values are listed in the second row of
Table 2. Finally, we note whether the values in the first
row are less than or equal to the values in the second
row. The third row of Table 2 indicates the comparison re-
sults. Because the four lowest P-values are less than their
corresponding d X i/n, these four tests are significant at
the 0.05 false discovery rate, and the other six are not sig-
nificant. If a Bonferroni adjustment were performed instead
of a false discovery rate adjustment (misapplied by inter-
preting individual test results), only the first two lowest
P-values would be significant, as all P-values would be
compared with 0.005. Without any adjustment, the tests
corresponding to the six lowest P-values would be declared
significant.

The BH procedure overcomes the philosophical diffi-
culties pointed out earlier with the Bonferroni procedure.
First, the BH procedure is not a test of a composite null hy-
pothesis against an omnibus alternative. Instead, the results
of the BH procedure identify the individual tests that are to
be declared significant. Second, the types of inconsistencies
evident with the Bonferroni procedure do not occur with

the BH procedure. In the earlier example in which two re-
searchers independently analyze the same data, with the
first performing 20 tests and the second performing an addi-
tional 80 tests, all with P-values of 0.001, all the tests are
significant at the 0.05 false discovery rate level in each sit-
uation using the BH procedure; in fact, increasing the num-
ber of tests (assuming the P-values remain 0.001) will
always result in every test significant at the 0.05 false dis-
covery rate level because i = n is the largest index for
which p; < d x i/n (ie, 0.001 < 0.05 n/n = 0.05).

This above example illustrates that the BH procedure is
““scalable” as a function of the number of tests. Unlike the
Bonferroni and other multiple-testing adjustment proce-
dures, the BH and other false discovery rate control proce-
dures work equally well with an increasing number of tests
performed. With the Bonferroni procedure in particular, a
sufficiently large number of tests can reduce the single-
test significance level to such an extent that the possibility
of rejecting any null hypothesis is all but prevented. It
should be noted, however, that the validity in applying
the BH procedure in a scenario where one performs the
adjustment on an initial set of tests, and then again on a
batch of additional tests, relies on two assumptions being
met. First, the relative frequency of true null to true alterna-
tive hypotheses is assumed constant with the addition of
new tests. The second more crucial assumption is that the
distribution of P-values for tests with true alternative hy-
potheses is maintained with the addition of new tests. Intu-
itively, this means that the evidence for true alternative
hypotheses in the additional tests should be equally strong
(or weak), on average, to the ones initially studied. This
assumption could be violated in a number of ways. For
example, if the additional tests involved larger sample
sizes, or if the additional tests were more likely to have
larger (or smaller) effect sizes than the ones initially exam-
ined, then the distribution of P-values for true alternative
hypotheses would likely be different from the initial set.
In this case, the BH procedure would fail to scale properly
with the addition of new results.

Most applications of false discovery rate control have
been in situations where tens of thousands of tests (or more)

Table 3. Number of tests in each study, followed by the number of significant tests at the & = 0.05 level when the significance level is unadjusted,
Bonferroni-adjusted, and adjusted using the Benjamini—Hochberg false discovery rate control procedure

N Unadjusted Bonferroni Benjamini—Hochberg
Marx et al. (Table 6) [26] 28 2 0 0
Bombardier et al. (Table 1) [27] 55 27 0 26
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Table 4. Number of tests in each study, followed by the number of significant tests at the o = 0.20 level when the significance level is unadjusted,
Bonferroni-adjusted, and adjusted using the Benjamini—Hochberg false discovery rate control procedure

N Unadjusted Bonferroni Benjamini—Hochberg
Marx et al. (Table 6) [26] 28 6 1 1
Bombardier et al. (Table 1) [27] 55 33 17 30

are performed, but the procedures work reliably in smaller
numbers of tests. Simulation analyses [1,12,29] have indi-
cated that false discovery rate control has uniformly better
power than other competitor methods (including FWER
control), and the fraction of false positives is about what
would be expected, even in small to moderate numbers of
simultaneous tests. Thus, false discovery rate control has
application in smaller studies, though the advantages are
more pronounced with larger numbers of tests.

To illustrate false discovery rate control in a real
example, the BH procedure can be applied to the P-values
from Marx et al. [26] and Bombardier et al. [27]. In Table 3,
we display the number of significant tests at the oo = 0.05
level without adjusting the significance level, using a Bon-
ferroni adjustment and BH adjustment at the 0.05 false dis-
covery rate level. Table 4 provides summaries using a
significance level of o = 0.20, and 0.2 false discovery rate
level. For the Marx et al. [26] study, in which the distribu-
tion of P-values is roughly uniform, both the Bonferroni
and BH adjustments result in very few tests declared signif-
icant, both at the 0.05 and 0.20 levels. The low P-values
likely correspond to true null hypotheses that had low P-
values by chance, so it is reasonable that they should not
be declared significant results. By contrast, for the Bombar-
dier et al. [27] study, the Bonferroni adjustment produces a
low number of significant tests at both the 0.05 and 0.20
levels, but the BH procedure results in nearly the same
number of significant results as without any significance
level adjustment. Because the frequency of low P-values
for the Bombardier et al. [27] study is large, the BH proce-
dure recognizes that almost no adjustment is needed to the
significance level.

Although more powerful than the Bonferroni procedure,
the BH procedure acts as though every null hypothesis
were true when estimating the number of falsely rejected
null hypotheses. This results in an inflated estimate of the
false discovery rate. A popular refinement to the BH pro-
cedure [28] estimates the frequency of true null hypotheses
from the distribution of P-values. To illustrate the logic, the
22 P-values uniformly distributed to the right of 0.2 (eg,) in
the bottom histogram of Fig. 1 arguably correspond to true
null hypotheses. This implies that approximately 22/
0.8 = 27.5 P-values total, including those to the left of
0.2, are true null hypotheses. Thus, of the 55 P-values in
the study, approximately 27.5/55 = 50% of the P-values
correspond to true null hypotheses. Using 50% as the true
null hypothesis frequency instead of 100% can sharpen con-
clusions and increase power. Other refinements have been
proposed, including other methods to estimate the fraction

of true null hypotheses [30,31], and mixture models for
the probability any specific null hypothesis is true [32].

6. Conclusion

Despite the commonplace use of Bonferroni-type sig-
nificance level adjustments to address the increased proba-
bility of mistakenly rejecting true null hypotheses, we
argue that such adjustments are difficult to justify on phil-
osophical grounds. Furthermore, if researchers are con-
cerned about being unable to limit the probability of
mistaken conclusions among statistically significant results,
then using Bonferroni-type adjustments based on the multi-
plicity of tests do not directly address this concern. An
alternative approach is to implement false discovery rate
control, an adjustment method that has a solid foothold in
areas of data mining large data sets, especially in the
context of genomic data research. False discovery rate con-
trol is used much less frequently in health studies. But as
health research continues to expand into areas requiring
the mining of large databases or exploring highly detailed
health information, researchers need to be aware of false
discovery rate control as a means to make reliable, well-
calibrated inferences from their studies.

The principle of false discovery rate control is not
limited to multiple tests, but is much more difficult to
implement when evaluating single tests. If a researcher
had an estimate of the probability that a null hypothesis
were true before performing a test, then with the help of
Bayes theorem false discovery rate control could be applied
by determining an appropriate significance level cutoff.
Some authors [5,33] have advocated no significance level
adjustments in multiple testing and, by implication, single
testing. Although choosing not to adjust significance levels
is justifiable, a disadvantage is that error rates among sig-
nificant results cannot be properly calibrated if this were
a goal of interest. However, in scenarios such as single tests
where it is difficult to assess the probability that a null hy-
pothesis is true, performing no significance level adjust-
ment may be the only objective course of action.

False discovery rate control is unfamiliar to many health
researchers, but is an important concept to appreciate espe-
cially in light of the common tendency to use significance
level adjustments based on controlling study-wide error
rates. Aside from the philosophical appeal to use false dis-
covery rate control adjustments, one main practical benefit
is the increased power, which researchers, no doubt, will
come to recognize once they work with large databases
and need to perform many tests. As scientific work
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continues to see greater use of false discovery rate control,
adjustments based on controlling false positive rates may
become increasingly more difficult to justify.
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