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Abstract

The Apolipoprotein-E (Apo-E) gene, a gene that produces proteins which help to
regulate lipid levels in the bloodstream, is of interest in the study of cardiovascular
diseases. An approach to making inferences about the genetic effects of the Apo-E
gene has been developed by Glickman and Gagnon (2002). The framework describes
the role of genetic and risk factors on the onset ages of multiple diseases, and accounts
for the possibility that an individual was censored for reasons related to the diseases of
interest. The framework also allows for missing genetic information, so that subjects
censored prior to genetic sampling, and therefore missing such information, may still
be included in the analysis. We apply an extension to this framework to the original
cohort of the Framingham Heart Study for measuring the effects of different Apo-E
genotypes on the onset age of various cardiovascular disease events. In particular, we
compare the fit of univariate versus multivariate onset age components to the model,
whether to incorporate health covariates measured at baseline or at a point later in
the study, and whether to assume a heritability model for Apo-E genotype frequencies.
The results of the best fitting model are presented.
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1 Introduction

Apolipoprotein-E (Apo-E) is a gene of interest in the study of various pathologies, including
the study of Alzheimer’s disease (Saunders et al. 1993), sleep apnea (Kadotani et al. 2001),
and cardiovascular diseases (CVD) (Eichner et al. 1993, Wilson et al. 1994, Schachter et al.
1994, Stengard et al. 1995). In all these and many other papers, polymorphism of the Apo-E
gene have been associated with varying levels of plasma concentrations of cholesterol, so it
has been a natural focus of medical research concerning diseases that stem from elevated
lipid levels in the bloodstream. Recent work on the connections between the Apo-E gene and
cardiovascular diseases have produced mixed results. Heijmans et al. (2002) find that, among
a cohort of subjects over 85 years of age, little evidence points to a relationship between Apo-
E genotype and cardiovascular mortality. Lahoz et al. (2001) conclude differential risk in
cardiovascular disease among subjects with different Apo-E genotypes. In a recent review
study, Eichner et al. (2002) find modest associations to cardiovascular disease risk and Apo-
E polymorphism, but not overwhelming evidence. It is clear that the entire story on the

genetic effects of Apo-E genotypes on cardiovascular disease risk has not been fully told.

This paper examines sensitivity to various assumptions for a class of models to measure
the effects of Apo-E genotypes on the onset age of four different cardiovascular disease
events. We use data obtained from the Framingham Heart Study, a large cohort that has
been followed since 1948 to study factors influencing the onset of cardiovascular diseases.
Our approach, which involves Bayesian estimation of a parametric multivariate survival
model in the presence of censored onset ages, extends the one described in Glickman and

Gagnon (2002) by including a model component that accounts for disease-related death.



In the context of our framework, we consider various model assumptions to test. These
include the choice of whether to use baseline covariates or covariates collected more recently,
whether to assume a population equilibrium for the Apo-E alleles, and whether to assume
common genetic effects for all four cardiovascular disease onset ages. The approach we adopt
for model selection is in the form of cross-validation, in which we fit candidate models on
portions of the data, and examine their predictability on the remainder. Popular Bayesian-
justified information criteria to compare models, such as the deviance information criterion
(Spiegelhalter et al., 2002), are more easily implementable alternatives to cross-validation,
though these criteria are based on asymptotic arguments and may not work well for complex
model structures, such as the ones we examine in this paper. Our exploration of the data
is essentially a sensitivity analysis to various model assumptions. While our work is not
intended to be a complete analysis of the Framingham Heart Study data to determine the
genetic effects of the Apo-E genotypes on CVD onset, the goal here is to provide some clues
about reasonable modeling assumptions that might lead to an improved understanding of

the connection between Apo-E polymorphism and cardiovascular disease onset.

The paper is organized as follows. We discuss the data used in our study in Section 2. This
is followed in Section 3 with the statistical model for the genetic effects on CVD onset ages.
We explain our approach to examining the sensitivity to modeling and data assumptions in
Section 4, the results of which are described in Section 5. We conclude the paper in Section 6

with a discussion of our methods and results.



2 Framingham Heart Study data

The data we use to study the genotypic effects of Apo-E polymorphism on cardiovascular
disease onset come from the Framingham Heart Study. The Framingham Heart Study,
which began in 1948 and initially funded by the National Heart Institute, is one of the
largest ongoing studies conducted to learn about the causes of heart disease and stroke.
Details of the design and methods of the study can be found in Dawber et al. (1951). The
study recruited 5209 men and women between the ages of 28 and 62 from Framingham,
Massachusetts, almost all Caucasian, gathering extensive information every two years from
physical exams and interviews. Diagnosis of CVD events were based on clinical information
obtained during study visits, records obtained from personal physicals, and hospitalizations
(Dawber et al. 1951). To increase certainty of diagnosis, a panel of three physicians reviewed

all suspected CVD events to ascertain their occurrence.

The cohort we examine consists of 4804 subjects who were free of CVD symptoms at study
entry. For each subject, we collected information on the ages of onset of four CVD events.
These included the age of first occurrence of angina pectoris, recognized acute myocardial
infarction (MI), unrecognized (“silent”) acute myocardial infarction, and congestive heart
failure (CHF). Unrecognized MI is usually identified upon EKG reading during a physical,
and in the Framingham Heart Study such physical exams were conducted at most every two
years. For subjects that died, we obtained the age of death, as well as whether death was
due to reasons related to a CVD (not just restricted to the four CVD events in the study).
If a subject lived or was lost to follow-up, we recorded the age at which the subject was last

observed in the study. The frequency of missingness of the disease onset ages is high in the



cohort. For all four diseases, over 80% of the onset ages are missing, and therefore treated

as censored. The average censoring age for this cohort was 76.55.

Blood samples for DNA in the Framingham Heart Study were obtained between 1987 and
1991. Apo-E genotyping was performed as described in Hixson and Vernier (1990). The Apo-
E gene produces proteins that are believed to help metabolize certain plasma lipoproteins
in the circulation. The three most common allelic forms of the Apo-E gene are referred
to as €2, e3 and e4, which code for proteins Apo-E2, Apo-E3 and Apo-E4. Consequently,
we consider six possible genotypes formed by pairs of alleles: e2/e2, e2/e3, e2/e4, e3/e3,
e3/ed, and ed/ed. Carriers of an e4 allele are understood to be at higher risk for Alzheimer’s
disease than individuals without (e.g., Saunders et al. 1993), and at higher risk for sleep
apnea (Kadotani et al. 2001) than individuals without. No conclusive evidence exists about
the impact on CVD. Of the 4804 subjects in our analysis, only 1266 (26%) had information

recorded about their Apo-E genotype.

Health covariates were also obtained for use in our statistical models. These included
smoking frequency, forced vital capacity (cl/s), serum glucose level (mg/dl), systolic blood
pressure (mm Hg), hemoglobin level (mg/ml), body mass index (kg/m?), serum cholesterol
level (mg/dl) and phospholipid level (mg/dl). Information on these health covariates were
obtained at every exam in the Framingham Heart Study, and could be expected to be related

to CVD onset.

For the 1266 subjects with recorded Apo-E genotypes, Table 1 shows the mean age of
disease onset for the four different CVDs we examine, and the average age of CVD-related

and non-CVD-related death ages. The average disease onset ages are generally in the late 60s



Angina Unrecognized Recognized CVD non-CVD

Genotype Pectoris MI MI CHF Death Death
e2/e2 || 67.9 (NA) 67.36 (NA) NA (NA) NA (NA) | NA (NA) 90.9 (0.2)
e2/e3 || 68.0 (0.8) 68 9 (1.0) 71.1(1.1) 77.9(0.9) | 84.0 (0.5) 81.8 (0.6)
e2/ed || 65.2 (2.7) A (NA)  74.2(2.3) 86.9(0.3) | 89.2 (0.2) 85.6 (2.3)
e3/e3 || 67.9 (0.3) 72 4(0.3) 72.6 (0.4) 78.7 (0.3) | 81.7 (0.2) 84.0 (0.3)
e3/ed || 66.3 (0.6) 78.5 (0.6)  72.1 (0.7) 74.6 (0.8) | 81.4 (0.5) 83.6 (0.5)
ed/ed || 69.8 (NA) 67.3 (1.5) 83.8(0.8) 76.8 (2.5) | 84.3 (1.1) 86.0 (0.2)

Table 1: Sample means (and standard errors) for the ages of disease onset, and ages of
CVD-related death and non-CVD-related death, grouped by Apo-E genotype. With only
one observation in a category, the standard error is missing (and denoted as “NA”).

to early 80s. Average ages of death are slightly higher, tending to be in the eighth decade. No
clear pattern emerges of how average disease onset ages vary by Apo-E genotype, certainly

without accounting for health covariates.

3 Multivariate statistical model for disease onset

The multivariate model we adopt for measuring the effects of Apo-E genotypes based on the
Framingham Heart Study data extends the one presented in Glickman and Gagnon (2002).
We assume that n = 4804 subjects in the cohort are free of the K = 4 genetically-related and
irreversible cardiovascular diseases under investigation. The model assumes that covariate
information is collected on subjects prior to their developing any of the diseases, but the
genetic information is obtained a substantial time beyond the beginning of the study. For
subject 7, let A;1,..., Ay be the onset ages of the 4 diseases. Our framework assumes that
all subjects would eventually contract all diseases, though censoring due to death or study
termination prevents some or all of these events from being observed. In contrast to cure

rate models considered by Berkson and Gage (1952) and, more recently, Chen et al. (1999),



our assumption may be reasonable if it is believed that other factors besides the genes and
measured covariates contribute to the variability of disease onsets. Let W; = (W1, ..., Winr)
be a vector of M = 6 binary indicators for the Apo-E genotype of subject i. Because our
application involves gene mutations at a single locus, only one of the W;,, would be 1, and

the rest 0 for subject i.

Let X; = (X1, X;2) denote a vector of covariates partitioned into two sets. One set, X1,
consists of environmental factors, comorbidities, and other health factors that are believed
to be causally unrelated to the genetic factors considered in the study. The second set, Xjs,
consists of health factors that may be causally related to the genetic factors. It is assumed
that prior information exists that allows the investigator to separate covariates into these
two categories. Because the goal of our framework is to model the direct effects of genes,
it is important to treat these “causal” covariates separately in our model to avoid potential

confounding.

Table 2 displays health covariates that we have incorporated into our analysis. We divide
the variables into ones that can be viewed as being causally related to the Apo-E gene (serum
cholesterol levels, phospholipid levels), and ones that are assumed causally unrelated to the
Apo-E genes. Because the Apo-E genes are responsible for cholesterol transport in the blood,
we would anticipate a direct relationship between gene presence and average cholesterol and

phospholipid levels. Health covariates are non-missing for all subjects.

As is common and conventional with parametric survival models, we consider a Weibull

distribution for onset age A;; for subject 4, disease k = 1,...,4, given by

Air | X, Bry A, i, ~ Weibull(fe, A) (1)
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Covariates not | Covariates possibly

causally related to | causally related

to Apo-E alleles | to Apo-E alleles
Cigarettes per day | Serum Cholesterol level (mg/dl)

Forced vital capacity (cl/s) | Phospholipid level (mg/dl)

Serum glucose level (mg/dl)
Systolic blood pressure (mm Hg)
Hemoglobin level (mg/ml)
Body mass index (kg/m?)

Table 2: List of health-related covariates. The first column contains covariates that are
assumed causally unrelated to the Apo-E alleles, and the second column contains covariates
in our model that are assumed casually related to the Apo-E alleles.

with density
A
J(Aik | i, A) = EA?EI exp(—Aj,/ pir)-

Here, we assume a log-link function for p

log(pix) = (X1)iBk + Wi(vor + Zimik) (2)

where Z; is 1 if subject 7 is female, and 0 if male, vy, is a vector of the six Apo-E genotype
effects for males, and ~y; is a vector of six incremental Apo-E genotypic effects for females.
The parameter u;; is composed of the additive effects of covariates X;; not causally related
to the Apo-E genes through a linear term with S, and of genetic factors W (vor + Zivik)-
For each disease k, the genetic factors comprise 12 possible effects, each one indexed by a
gender and Apo-E genotype combination. In the actual model implementation, only 11 free
parameters per disease is assumed to avoid parameter aliasing. Lahoz et al. (2001) were able
to infer a relationship between Apo-E genotype and gender on the onset of cardiovascular
diseases. Before constructing our model for onset ages of the four CVD events, we examined
scatter plots which suggested transformations of several covariates. Serum glucose level was

incorporated into the model on the log scale, including a quadratic term (again on the log
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scale). A quadratic term was included for systolic blood pressure, and a quadratic term was
also included for hemoglobin level. The remaining covariates in the model were included
linearly. As explained in Glickman and Gagnon (2002), avoiding the incorporation X, into
the onset age component of the model is to prevent potential confounding of cholesterol and
phospholipid levels with the Apo-E genotypes, as these covariates would be in the causal

pathway to the effect on onset ages.

Instead of modeling onset age distributions as Weibull, a wide variety of models could
be considered, such as log-normal and Gamma if interest lies in parametric modeling, or
semi-parametric models such as Cox’s proportional hazards model. A recent review of semi-
parametric survival modeling techniques, appropriate for use in our framework, can be found
in Sinha and Dey (1997). We argue for the use of parametric hazards in our context because
disease onset ages are of crucial interest, and that potentially a large amount of missing
data often requires stronger modeling assumptions. With a large fraction of missing and
censored data, precise inferences about model parameters is not realistic. The effectiveness
of parametric hazards is argued by Efron (1988), and more recently by Gelfand et al. (2000),

for such situations.

We further model cholesterol and phospholipid levels, the covariates that are possibly
causally related to the genetic factors, X;s, as a function of the W ;. We assume that (X3);1,
cholesterol level for subject i, and (X3);2, the phospholipid level for subject 7, can be modeled
as a function of genotype,

(X2)ij ~ N(Wiax;, 0%;) (3)

for j = 1,2, where ax; is a vector of genotype effects on causal factor j, and similarly



ag(j is the corresponding variance. From examining distribution plots of cholesterol and

phospholipid levels, these variables remained untransformed. This component of the model
increases the precision of inferences about the missing W; through their relationship to the
cholesterol and phospholipid levels. Because the utility of this component of the model is
used to improve inferences about the missing W; as a simple linear model on the mean, rather
than make inferences about the parameters of this model component, it is not necessary to

model the correlation structure of Xs.

In the Framingham Heart Study data, we measure not only disease onset ages, but
also age of CVD-related death, disease death unrelated to CVD (e.g., due to cancer), and
accidental death or censoring due to study termination. For each subject, exactly one of these
three ages is observed, and is therefore assumed to censor the other two events that could
have otherwise occurred. We extend the framework in Glickman and Gagnon (2002), which
does not distinguish among the different events that censor disease onset ages, to specifically
include a model component that accounts for cardiovascular disease-related death. Letting
R; be the age at which a subject dies for reasons arguably related to cardiovascular disease,
we assume

R; | X, W, Z;,0r, pir ~ Weibull(y;r, Or) (4)
with
log(pir) = (X1)iBr + (Xa)iar + Zing + W30,
where 0 is the Weibull shape parameter specific to the distribution of the R;, Sz and ap are
the non-causal and causal covariate effects, ng is the gender effect, and 6 are the genotypic
effects on CVD age of death. The distribution of R; depends on covariates both causally and

non-causally related to the Apo-E genotypes, as well as to the genotypes themselves. The
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inclusion of this component of the model is intended to improve inferences on the missing

W,

Because the W ; are missing for some 7, our model specification is completed by assuming
a model for the W ;. In our subsequent analyses, we consider two possible model components.

The most general model assumes
W, | ® ~ Multinomial(1, 7r) (5)

for 6-vector parameter of probabilities . The second model we consider places constraints
on the multinomial model by assuming that the allele frequencies in the population are in
Hardy-Weinberg equilibrium (which is crudely supported by the distribution of the observed
data). Letting po, p3 and p4 represent the allele frequencies in the study population of Apo-E

e2, e3 and e4, respectively, the genotype frequencies can be modeled as m; = p2, m = 2paps,

T3 = 2popa, T4 = P3, T5 = 2p3pa, and we = pj.

To reflect our initial uncertainty, a non-informative proper prior factoring into locally
non-informative independent densities was assumed for all model parameters. The linear
parameters in the onset age models had normal densities with mean 0 and variance 1000,
the variance parameters were assumed to have Gamma distributions with mean 1 and vari-
ance 10, and the cholesterol and phospholipid parameters in (3) were assumed normal with
mean 200 and variance 10000. For the Apo-E genotype probabilities, we assumed for the
Hardy-Weinberg equilibrium model that the parameters (ps, ps, p4) had a Dirichlet prior dis-
tribution with parameters (0.05,0.85,0.10). The weakly informative Dirichlet parameters
were chosen to be consistent with previous findings on Apo-E allele frequencies, while al-

lowing the likelihood to dominate inferences. For the unconstrained model, we translated
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these Dirichlet parameters to genotype parameters (that is, the Dirichlet parameter for m;
was 0.052, for 7 was 2(0.05)(0.85), and so on). It should be noted, however, that it is not
necessary to incorporate such information into the prior distribution; for example, assuming
equal values for the p; would be appropriate if no additional information were available.
Estimates of these allele frequencies, which are known to vary in different populations, can

be found, for example, in Hallman et al. (1991) and Louhija et al. (1994).

A noteworthy feature of our model is that each subject has simultaneously any number
between 0 and 4 disease onset ages A;q, ..., A;s observed, though any or all may be censored.
Furthermore, the age of cardiovascular disease death, R;, which can be viewed as a type
of disease onset age, can also be “censored” in the sense that study termination or non-
cardiovascular disease death prevents R; from being observed. In our model, when R; is not
observed, we act as though it would have been observed eventually as if it were a censored
event, so that the contribution of a missing R; to the likelihood is the right-tail probability

of the Weibull distribution.

Inference for our model can be performed using Markov chain Monte Carlo (MCMC)
methods, such as the Gibbs sampler (e.g., Gelfand and Smith 1990). The algorithm can be
implemented by alternately sampling from the following three sets of conditional posterior
distributions: the distribution of the missing A;;, and R; given model parameters, observed
data, and complete genetic information; the distribution of the missing genetic information
W given model parameters and disease onset ages; and the distribution of the model pa-
rameters given complete genetic information and disease onset ages. Sampling from each of

the conditional distributions is described in detail in Glickman and Gagnon (2002). For the
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current study, the Gibbs sampler was implemented in the statistics software package BUGS

(Spiegelhalter et al., 1996).

4 Data and modeling assumptions

Using the framework in Section 3, we examine various modeling and data assumptions to
obtain the best-fitting model. Specifically, we vary three different factors relevant to modeling
the onset age distributions, and then evaluate the fit using cross-validatory criteria. The

resulting model fit is described in Section 5.

The first modeling assumption we explored was to examine the different diseases uni-
variately, versus multivariately, within one model. Modeling individual disease onset ages
separately makes no assumptions about connections between the effects of genotypes and
covariates. The tradeoff, however, is that inferences may be less precise because of the abun-
dance of missing genetic information and censored CVD event ages. A multivariate model
allows for the possibility of pooling information across the four cardiovascular diseases. The
pooling was carried out by assuming that the effects of gender and Apo-E genotype are
identical for all four diseases. This corresponds to assuming that 7;; = 7; in Equation (2),
that is, the 7;; are identical for £ = 1,...,4. An alternative approach, not explored in this
paper, would be to assume a random effects distribution for the 7;; rather than assuming

them equal across the four diseases.

Because the covariates are measured at least every two years in the Framingham Heart

Study, several alternative methods exist for their inclusion. The two approaches we consider
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in our study consist of modeling CVD onset ages as a function of covariates measured
at baseline, and incorporating the most recently measured covariate information prior to
any onset of disease. For the second approach, we use the covariate information for each
subject from an exam that occurred no more than two years prior to the onset of one of
the four diseases. A clear advantage of using the more recent covariate information is that
the temporal relationship to disease onset should be more pronounced and predictive, so
that the variability in onset ages due to health covariates will be adjusted to full effect. A
disadvantage of this approach, however, is that temporal changes in health covariates may
be related to unobserved or unmeasured diseases that may have a cardiovascular origin. For
example, suppose a subject in the study has hypertension onset before the occurrence of
any of the four measured diseases. Then hypertension may affect covariate levels, which in
turn may result in the onset of one of the observed diseases. If there is an impact of the
Apo-E genotypes on hypertension, then the effect of the recent covariates are confounded
with the effect of the genotypes. Alternatives to the choices we consider include methods
for tracking changes in covariates over time. For example, models with time-dependent
covariates are possible, but this approach has the aforementioned disadvantages connected
with using recent covariate values. Also, incorporating covariates measured temporally into
a model has the difficulty that the magnitude of temporal changes in covariates may have

varying impact on disease onset age across subjects.

The third factor is the assumed distribution on genotype frequencies. The most natural
assumption is that the Framingham population is in genetic equilibrium and that the allelic
distribution follows Hardy-Weinberg equilibrium. This assumption induces constraints on

the genotype frequencies. We model the frequencies as arising from a Dirichlet distribution
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that has three parameters (representing the allele frequencies). While clearly population
genetics arguments would lead to an allelic distribution that is close to that assumed under
Hardy-Weinberg equilibrium, it is not necessarily exactly so due to other potential selection
sources. In addition to considering Hardy-Weinberg equilibrium, we model genotype fre-
quencies as following an unconstrained Dirichlet distribution with six parameters instead of

three.

We therefore consider 23 = 8 modeling assumptions to explore:

1. Univariate onset age model versus multivariate model.

2. Including covariate information measured at study baseline, versus including covariate

information measured most recently before any CVD onset age.

3. Assuming an unstructured prior distribution for the genotype frequencies, versus as-

suming a prior distribution consistent with Hardy-Weinberg equilibrium.

To assess and compare the adequacy of the different models, two forms of validation are
considered. Each form involves a cross-validatory criterion in which the proposed models
are fit on a portion of the data, and then we determine how well each fitted model predicts

the data left out.

The first model assessment approach involves predicting onset ages from randomly deleted
cases, and comparing the predictive discrepancy between predictions and actual onset ages.
We use squared deviations as the form of the discrepancy, though clearly other choices are

possible (e.g., those based on the Weibull deviance function). For each model considered,
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a randomly chosen subset of 400 cases out the 4804 are left out as a validation sample.
The model is then fit to the remaining 4404 subjects. For the validation sample of 400
subjects, posterior simulated values of the onset ages are computed using the results of
MCMC posterior simulation. The average squared deviation of the simulated onset ages from
the observed onset age is computed for each subject having an observed onset age, and the
results are averaged across the entire validation sample. The process of randomly choosing a
subset of 400 to leave out, fitting the model, and calculating the predictive goodness of fit is
repeated three more times, and the resulting goodness of fit summary is averaged across the
four analyses. The repeated analyses are carried out to reduce the dependence of the results
on a single validation sample. Note that the same sets of splits between development and
validation samples are used for each model we considered. The final value averaged over the
four analyses is a measure of predictive goodness of fit, with smaller values indicating better

fits. This value can be viewed as a variance measure, so it has an interpretation as such.

The second model assessment makes use of all subjects, and focuses on how well the
model infers genotypes. The statistic we compute is an average of probabilities of correctly
predicting an artificially missing genotype. The final value of the statistic is an estimate of the
average posterior probability of correctly identifying genotypes from an external sample. An
alternative would be to calculate the log of the probability, and average these across subjects
and diseases — this particular statistic is closer to the form of a multinomial deviance. The
calculation is carried out as follows. A randomly chosen subset of 800 subjects is selected.
The genotype information, if observed, is then treated as missing. This process mimics
what would happen if the age of DNA sampling for these individuals is artificially increased,

so that genotyping never takes place for that subject while in the study. The model is
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then fit by the modified data, and posterior simulated values are produced for the deleted
genotypes. For each subject with an observed genotype that was deleted, the proportion
of simulated genotypes that match the observed genotype is recorded, and averaged across
all subjects. Again, this process of selecting 800 subjects at random, deleting the genotype
information, fitting the model, and recording the average proportion of matches is repeated
three more times. The final value is averaged over the four analyses to produce an overall
measure of the probability of recovering missing genotypes. Larger values indicate better

model performance.

To assess the variability of the cross-validatory criteria, we performed standard two-
way ANOVA on the cross-validation statistics for each of the eight models across the four
validation sets. That is, in the two-way ANOVA, one factor consisted of the eight model
choices, and the second factor consisted of the four validation sets. The results of the
ANOVA provide an indication for whether the models differ on the cross-validation statistic,
accounting for the different validation sets, and the magnitude of the variation of the cross-

validation statistics through the mean-squared error.

5 Results

For each of the eight models that was fit, single series Gibbs sampler with over-dispersed
starting values were run for a burn-in period of 5,000 iterations. The sampler was continued
another 4,000 iterations, subsampling all missing data and parameters every 8 iterations. The
subsampling was performed both to reduce autocorrelation in the successive Gibbs draws,

and to conserve disk space. Convergence of the Gibbs sampler was assessed from these 4,000

17



simulated draws through trace plots, and simple diagnostics that compare parameter sample
means from early parts of the series to later parts (Geweke 1992). Posterior summaries were

computed from the 500 subsampled simulated values.

The cross-validation model diagnostics described in Section 4 are displayed in Tables 3
and 4. In Table 3, we compute the approximate posterior means for the mean squared devi-
ations between the predicted and actual onset ages. From the two-way ANOVA performed
on these statistics across the four validation samples, the residual standard deviation was
0.90, and that the differences among the models was not compellingly strong (the p-value
for the difference among models was 0.27). Carrying out the ANOVA on the logarithms
of the statistics did not substantively change the conclusions. However, examining the
individual assumption-based factors on the cross-validation statistics leads to some note-
worthy comments. The one factor that distinguishes among models through the predictive
cross-validation measure is whether Hardy-Weinberg equilibrium is assumed for the allele
frequencies. When the genotype distribution is unrestricted, the posterior variances are con-
sistently lower than assuming Hardy-Weinberg equilibrium for the alleles. To a lesser extent,
assuming different genetic effects on the onset ages across diseases produces lower variances
on average, so that assuming different genetic effects is slightly preferred on this measure.
The comparison of baseline versus recent data does not reveal any notable difference using
predictive standard deviations. On the basis of design issues, using the baseline health data
seems slightly preferable because we are more certain that unobserved confounding health
variables are not as relevant at baseline. The single best model according to the posterior
mean predictive variance is the one that uses baseline covariates, different genotypic effects,

and an unrestricted prior distribution on genotype frequencies.
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Genetic effects Genotype Posterior mean
Covariates | across diseases distribution || predictive variance
Baseline Different Unrestricted 6.86
Baseline Different | Hardy-Weinberg 8.12
Baseline Same Unrestricted 7.34
Baseline Same | Hardy-Weinberg 7.79
Recent Different Unrestricted 7.04
Recent Different | Hardy-Weinberg 7.88
Recent Same Unrestricted 7.38
Recent Same | Hardy-Weinberg 8.33

Table 3: Onset age cross-validation results. For each of the eight models, the posterior mean
of the cross-validated predictive variance is computed. The root MSE across the validation
samples is 0.90.

The posterior mean genotype matching probabilities are displayed in Table 4. The larger
the reported probability, the greater the frequency that the model recovers the genotype of
randomly deleted genes. From the two-way ANOVA associated with the matching probabili-
ties, differences among the models accounting for the variation due to the different validation
samples are more compelling than in the predictive squared deviation analysis. Here, the
p-value for the model factor is 0.026, and the standard deviation of the probability statistic
adjusted for the validation samples is 0.018. We therefore view the information in Table 4
as more reliable in distinguishing among the different modeling assumptions. The pattern
of probabilities reveals that a greater chance at recovering randomly deleted genes when the
prior distribution on genotype frequencies is unrestricted. This is true for all four combina-
tions of the other two factors. Whether baseline covariates are used, or whether the genotypic
effects are assumed the same across diseases has little impact on the matching probabilities.
The best model suggested by this measure uses baseline covariates, unrestricted prior distri-

bution on genotype frequencies, and common genotypic effects across disease.

We first examined the results of fitting the model that is most preferred by the posterior
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Genetic effects Genotype Posterior mean
Covariates | across diseases distribution | matching frequency
Baseline Different Unrestricted 0.429
Baseline Different | Hardy-Weinberg 0.383
Baseline Same Unrestricted 0.430
Baseline Same | Hardy-Weinberg 0.400
Recent Different Unrestricted 0.414
Recent Different | Hardy-Weinberg 0.413
Recent Same Unrestricted 0.416
Recent Same | Hardy-Weinberg 0.402

Table 4: Genotype matching cross-validation results. For each of the eight models, the
posterior mean of the genotype match probabilities is computed. The root MSE across the
validation samples is 0.018.

predictive variance criterion, where genetic effects are different for distinct diseases. In
doing so, we refit the model with a burn-in period of 20,000 MCMC iterations, and then
calculated posterior summaries based on 5,000 subsequent iterations. While slight differences
existed in the genetic effects between diseases, the relative magnitudes were similar enough
to prefer the more parsimonious model having identical genetic effects. This is the model
for which the matching probability criterion indicates the greatest preference. The reliance
on the matching probability analysis is also suggested by the greater precision of the cross-
validation statistic in the two-way ANOVA. Summaries of the genetic effects are displayed

in Table 5.

For two genotypic effects, vy; and 5, and Weibull shape parameter A, the relative effect
on median onset age is exp(—(y; —72)/A). Thus larger values in Table 5 correspond to earlier
onset ages. The genotype most associated with early CVD onset age is €2/e4, particularly
for males, and this result is consistent with that described in Glickman and Gagnon (2002).
With a posterior mean shape parameter of 7.34 (the 95% central posterior interval is (7.11,

7.44)), we can estimate that, for example, males with e2/e4 have CVD onset ages typically
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Posterior 95% Central
Genotype | Mean Effect Posterior Interval
Male, e2/e2 —1.136, (-3.331, 0.982)
Male, e2/e3 —0.880, (~1.406, —0.359)
Male, e2/e4 2.048, (1.769, 2.372)
Male, e3/e3 ~0.203, (-0.473, 0.121)
Male, e3/e4 —0.847, (-1.207, -0.494)
Male, ed/ed 0.935, (0.609, 1.313)
Female, e2/e2 —1.212, (-2.910, -0.040)
Female, e2/e3 —1.074, (-1.570, -0.612)
Female, e2/e4 1.322, (1.071, 1.678)
Female, e3/e3 —0.909, (-1.154, —0.573)
Female, e3/e4 —1.583, (-2.011, -1.156)
Female, e4/ed —0.341, (-0.681, 0.045)

Table 5: Approximate posterior means and 95% central posterior intervals for the genotypic
effects on age of CVD onset.

Posterior 95% Central
Genotype | Mean Effect Posterior Interval

e2/e2 —1.425, (-5.279, 0.757)
e2/e3 —0.932, (-2.371, -0.039)
e2/ed 2.347, (1.243, 3.145)
e3/e3 —0.047, (-1.193, 0.732)
e3/ed —0.887, (-2.107, -0.084)
ed/ed 0.944, (-0.287, 1.813)

Table 6: Approximate posterior means and 95% central posterior intervals for the genotypic
effects on age of CVD death.

about 14% lower than males with e4/e4, and about 26% lower than males with e3/e3. It is
also notable that males have earlier onset of CVD compared to females, specifically about

10% earlier. The main exceptions are e2/e2 and e2/e3 where the onset ages are similar.

Interestingly, as shown in Table 6, in the component of the model predicting age of
CVD-related death, R;, the effects of the different genotypes are similar to those predicting
onset ages. Specifically, the e2/ed genotype is associated with earliest age of CVD death,

followed by the e4/ed genotype. The e2/e2 genotype appears most protective, though the
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Apo-E | Percent observed | 95% Central
Genotype in sample | Posterior Interval
e2/e2 0.39 | (0.09, 0.66)
e2/e3 10.74 | (6.84, 9.46)
e2/ed 1.74 | (12.69, 15.63)
e3/e3 66.82 | (49.57, 53.84)
e3/ed 18.80 | (15.47, 19.09)
ed/ed 1.50 | (7.32, 9.79)

Table 7: Frequency distribution of genotypes in sample of 1266 individuals with non-missing
genetic information, and estimated population frequencies from the model.

large posterior interval casts uncertainty about this conclusion.

The health covariates in the model generally contribute substantially to the model fit.
In the onset age components of the model, the coefficients for body mass index, cigarettes
per day, and systolic blood pressure had central 95% posterior intervals that were positive
for all four diseases (so that the greater the covariate values, the lower the average disease
onset ages). The quadratic component for systolic blood pressure was not an important
predictor here. Forced vital capacity was significantly associated only with lower onset
age of angina and slightly higher onset age of congestive heart failure, and blood sugar
was quadratically associated with age of recognized myocardial infarction and congestive
heart failure. Hemoglobin levels had a slight quadratic association with age of recognized
myocardial infarction. In the model component predicting age of CVD-related death, body
mass index and cigarettes per day are associated with lower age of death, females tend to have
higher age of CVD death, and blood sugar and systolic blood pressure were quadratically
significant. Hemoglobin levels were not predictive of age of CVD death, nor were cholesterol

and phospholipid levels.

Table 7 displays the observed genotype distribution in the cohort among the 1266 in-
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dividuals who had DNA sampling, and the estimated distribution from the model (which
extrapolates to the study population represented by the original 4804 subjects). It should
be noted that a simple likelihood ratio chi-squared test for Hardy-Weinberg equilibrium
has a p-value of 0.211, so that the observed frequencies are not inconsistent with Hardy-
Weinberg equilibrium. According to the model, the frequency of the e4 allele is inferred to
be much higher than in the fraction of sample where DNA information was obtained. This
appears primarily to come through the e2/e4 genotype. Without heritability restrictions on
the genotype distribution, the model predicts that of the 3538 subjects with missing DNA
information, between roughly 15 and 19 percent had the e2/e4 genotype. The model also
predicts that the e4/e4 genotype is underrepresented among subjects with observed geno-
types. Because a large fraction of the cohort with unobserved genotypes evidenced CVD
events earlier than the fraction with observed genotypes, and the observed e2/e4 individuals
had early CVD onset ages, the model infers that a large number of individuals with missing

DNA information who have low CVD onset ages are likely to have the e2/e4 genotype.

6 Discussion

The framework presented in this paper, which extends Glickman and Gagnon (2002) by in-
cluding a model component that accounts for disease-related death, offers a flexible approach
to modeling the genetic impact on multivariate survival outcomes when genetic information
is missing due to death prior to DNA sampling. Our approach allows for a substantial frac-
tion of missing genetic information, as the genotyping is inferred from “causal” covariates

measured at baseline. These covariates are used to reduce the bias due to dropouts that
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have been censored for reasons related to the disease process under investigation. Because
we fit the models via MCMC simulation from the posterior distribution, missing onset ages

and genotypes can be addressed in a straightforward manner.

Our analysis of CVD events in the original Framingham Heart Study cohort using a
cross-validatory approach for model selection has resulted in several noteworthy observations.
First, imposing the distributional restriction on allele frequencies through the assumption
of Hardy-Weinberg equilibrium results in a worse fit. Both cross-validatory criteria fared
better (with one exception) when no restrictions were assumed for the genotype frequencies.
Interestingly, the incorporation of health covariates measured shortly before CVD onset
instead of baseline covariates does not improve the model’s predictive features. According
to the best-fitting model, the e2/e4 Apo-E genotype is most associated with earlier CVD
onset age. This result is corroborated by Glickman and Gagnon (2002), and the deleterious

effect of e2/e4 seems to persist in alternative models fit by the same data.

A curious result of our analysis is that among the fraction of the cohort that did not
survive to have their DNA sampled, a surprisingly large number of them are inferred (on
average) to have the e4 allele as part of their Apo-E genotype. For example, the inferred
fraction of the entire cohort with the e4/e4 Apo-E genotype is roughly 5 times as many as
observed, and the inferred fraction of the cohort with the e2/e4 Apo-E genotype is about
8 times as many as observed. These inferred fractions are large enough to imply a serious
violation of Hardy-Weinberg equilibrium, which would have the fraction of missing genotypes
be closer in magnitude to the observed fractions. Of course, Hardy-Weinberg equilibrium

is merely an assumption about the distribution of genotypes in the population, and is not
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verifiable from the observed data. Even though 15% of the original cohort possessing the
e2/ed4 Apo-E genotype seems like a big increase from the 2% observed in the sample, the
validation criteria, especially the missing genotype recovery calculation, points towards this
model being more consistent with the data than the models that assume Hardy-Weinberg

equilibrium.

The analyses in this paper are not meant to be a conclusive examination of the genotypic
effects of Apo-E on CVD onset, but instead an exploration of sensible modeling assumptions.
With roughly 3/4 of the cohort having missing genetic information, it is difficult to report
scientific conclusions without a large amount of uncertainty. While the original Framingham
Heart Study cohort is a rich data set for an examination of genetic epidemiological models,
more thorough modeling could involve, for example, the Framingham Heart Study offspring
cohort to supplement the information in the original cohort (a crude analysis of the con-
nection between Apo-E genotypes and CVD onset on the offspring cohort was carried out
in Wilson et al., 1994). The sensitivity analyses in this paper serve to demonstrate that
certain model choices can be considered by cross-validatory criteria, and that the results of
such analyses can be used as the starting point for a more thorough investigation of genetic

effects when a large fraction of a cohort has missing information.
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